
A mechanized proof of correctness of the Horn
algorithm

Extended Abstract

Marco Giunti ?

NOVA LINCS, New University of Lisbon, Portugal

Background This abstract presents a mechanized proof of correctness of a vari-
ant [4] of the Horn algorithm in the automated prover Why3 [2]. The paper [4]
introduces a functional presentation of the Horn algorithm [3] that is based on
a recursive formulation. This is in contrast with the usual pseudo-code impera-
tive presentations of the Horn algorithm, and allows 1) a concise, yet rigorous,
formalisation; 2) a clear form of visualising executions of the algorithm, step-by-
step; 3) precise results, simple to state and with clean inductive proofs. Roughly,
the algorithm receives a conjunction of Horn clauses presented as implications
of the form A → B, and recursively accumulates a set of symbols B1, . . . , Bn by
inspecting if A1, . . . , An are contained in the dynamically built set. The proce-
dure ends when a fixpoint is reached, that is the next iteration does not change
the accumulator, and returns 1 whenever ⊥ is not in the set, and 0 otherwise.
The paper proves that the algorithm is sound and complete: the result is 1 if and
only if the formula is satisfiable, and the result is 0 if and only if the formula is
contradictory.

Implementation in WhyML WhyML is a first-order language with polymor-
phic types, pattern matching, and inductive predicates. We specified a variant of
the algorithm of [4] in WhyML, and verified both tha the algorithm terminates,
and that is correct (sound). While the presentation in [4] is fully functional,
in our implementation we did mix functional and imperative features. More in
details, the algorithm is implemented as a three-layers program. The inner layer
is implemented by the recursive function algR : list boolH -> list boolA -> i

-> (list boolH, list boolA), where boolH is a horn implication, boolA is a horn
symbol, and i is the (ghost) type of propositional variables 1. The intermedi-
ate layer does use an imperative array: algRA26 : list boolH -> list boolA ->

array (list boolH, list boolA) -> i -> (list boolH, list boolA). The aim is
to track the intermediate results produced by the calls to algR, and to enforce
invariants that describe the semantics of the algorithm, e.g. the set of horn
clauses decreases while the set of horn symbols increase. The top level call is
implemented by alga2: list boolH -> i -> (array (list boolH, list boolA),

list boolA): the input is the horn formula (described as a conjuction of horn

? Work mainly supported by the Tezos Foudation, via project FACTOR.
1 The implementation relies on a theory of booleans that is built upon two sub-theories
presenting an algebraic and a lattice-based view of booleans, respectively. The theory
has beed developed to provide richer semantics to booleans in the proofs.



2 M. Giunti

clauses, hence the list), and the type parameter; the output is a pair of an array
(to ensure post-conditions) and of a list of symbols (this is the result in the
presentation in [4]).

Mechanized proof The proof of correctness is composed by 75 lemmas and
10 VCs. Most results have been gained by guiding the prover in order to build
the proof tree, i.e. à la Coq, which is unusual for the why3 platform (but yet
interesting since it shows the capabilities of the framework), and is motivated
by both the complexity of the proof (1K loc), and the (better) familiarity of the
author with Coq [1]. The key result is Proposition 3.5, which we outline below
to provide a flavour of the setting. The lemma says that for all horn formulas f ,
propositions A,B, and variables’ types i such that f is both SAT and contains
an implication of the form A → B, we have that or B is in the result, or the
negation of A is in the result, where the result is snd (algA2 f def), function
castH casts a symbol of type boolA to a (horn) symbol of type boolH, function
eval is the usual evaluation of propositional formulae, function evalOrList is
a specialized evaluation for disjunctions, and function or of neg listH2 maps a
proposition to a disjunction of negatives.

lemma prop35_aux3 : forall f : list boolH, a b : boolH, def : i.

(horn_formula f /\ noDup f /\

horn_sat f def /\ mem (ImpH a b) f) ->

let gen_eval (c : list boolA) : i -> t =

fun x ->

if mem (VarA x) c

then top

else bot in

let gc = gen_eval (snd (algA2 f def)) in

eval (castH b) gc = top \/ evalOrList (or_of_neg_listH2 a) gc = top

Discussion We are exploring the feasibility of obtaining a mechanised proof of
a fully recursive implementation of the Horn algorithm in Why3. These results,
together with the original presentation of the algorithm in [4], are foreseen to be
presented in an article to be submitted to a premier venue.

References

1. Coq 8.9.0 – Reference Manual, https://coq.inria.fr/distrib/current/refman,
accessed May 2019

2. Filliâtre, J.C., Paskevich, A.: Why3 — where programs meet provers. In: ESOP.
LNCS, vol. 7792, pp. 125–128. Springer (2013)

3. Horn, A.: On sentences which are true of direct unions of algebras. Journal of Sym-
bolic Logic 16(1), 14–21 (1951)

4. Ravara, A.: A simple functional presentation and an inductive correctness
proof of the Horn algorithm. In: HCVS. EPTCS, vol. 278, pp. 34–48 (2018).
https://doi.org/10.4204/EPTCS.278.6

https://coq.inria.fr/distrib/current/refman
https://doi.org/10.4204/EPTCS.278.6

	A mechanized proof of correctness of the Horn algorithm

