
Animated Logic: Correct Functional Conversion to
Conjunctive Normal Form
Pedro Barroso, Mário Pereira and António Ravara
NOVA LINCS & Departamento de Informática, Faculdade de Ciências e Tecnologias da
Universidade Nova de Lisboa, Portugal

Abstract
We present an approach to obtain formally verified implementations of classical Computational
Logic algorithms. We choose the Why3 platform because it allows to implement functions in a style
very close to the mathematical definitions, as well as it allows a high degree of automation in the
verification process.

As proof of concept, we present a mathematical definition of the algorithm to convert propositional
formulae to conjunctive normal form, implementations in WhyML (the Why3 language, very similar
to OCaml), and proofs of correctness of the implementations. We apply our proposal on two variants
of this algorithm: one in direct-style and another with an explicit stack structure. Being both
first-order versions, Why3 processes the proofs naturally.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases Computational logic, conjunctive normal form, functional programming,
proof of programs, Why3

Funding Tezos Foundation

Acknowledgements This work is funded by Tezos Foundation through the FACTOR project.

1 Introduction

Motivation. Foundational courses in Computer Science, like Computational Logic, aim
at presenting key basilar subjects to the education of undergraduate students. To strength
the relation of the topics covered to sound programming practices, it is relevant to link the
mathematical content to clear and executable implementations, provably correct to stress
the importance of sound practices.

Herein we present work developed in the context of the FACTOR [2] project, which aims to
promote the use of OCaml [10] and correct code development practices in the Portuguese-
speaking academic community. Specifically, the objectives of the project are the functional
implementation of classical Computational Logic algorithms and Formal Languages, the
accomplishment of correctness proofs and the step-by-step execution to help understanding
the algorithm.

The algorithm for converting propositional formulae to Conjunctive Normal Form (CNF)1

is often presented formally, with rigorous mathematical definitions that are sometimes difficult
to read [5, 7, 11], or informally, intended for Computer Science but with textual definitions
in non-executable pseudo-code [4, 9]. The implementation of algorithms of this nature is
a fundamental piece for learning and understanding them. Languages such OCaml allow
implementations very close to the mathematical definitions, helping the study because they
are executable. Also, the correctness proof of a functional implementation is simpler than
for the imperative one.

1 A formula is in CNF if it is a conjunction of clauses, where a clause is a disjunction of literals and a
literal is a propositional symbol or its negation.

2 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

Contributions. As proof of concept, we implement and prove correct the referred algorithm
in Why3 [6], a platform for deductive program verification. Why3 provides a first-order
language with polymorphic types, pattern matching and inductive predicates, called WhyML.
Also offers a certified OCaml code extraction mechanism and support for third-party provers.

To support the step-by-step execution of the algorithm, an important feature to help
students understanding the definitions, we also implemented a version in Continuation-
Passing Style (CPS) [14] and via defunctionalization got an evaluator, a version close to a
first-order abstract machine [3]. Due to the limited support of Why3 to the higher order, it
was not possible to close the correctness proof for the CPS version. This limitation however
is not present in the defunctioned implementation that has an explicit stack structure, but
in first-order. This implementation resulted from a mechanical transformation from the CPS
version. This version has been naturally proven correct by Why3.

In short, this article presents pedagogical material to support the teaching of classical
Computational Logic algorithms. We developed two implementations, formally verified in
Why3, from a presentation as a recursive function of conversion algorithm to CNF: the first
in direct style and the second with an explicit stack structure. Both were proved sound with
small effort, basically following from the assertions one naturally associates with the code to
prove it correct.

2 Functional presentation of the algorithm

Description. Let us call T to the algorithm that converts any propositional logic formula
to CNF. A propositional formula φ is an element of the set Gp, defined as follows:

Gp , φ ::= T | p | ¬φ | φ ∧ φ | φ ∨ φ | φ→ φ

The function T produces formula without the implication connective, so we define also the
set Hp as a subset of Gp without implications. We thus have T: Gp → Hp, where:

T(φ) = CNFC(NNFC(Impl_Free(φ)))

The algorithm composes three functions:

The Impl_Free function responsible for eliminating the implications;
The NNFC function responsible for converting to Negation Normal Form (NNF)2

The CNFC function responsible for converting from NNF to CNF.

Implementation. To represent the set Gp, we define the type formula that declares
variables (FVar) and constants (FConst), and constructs formulas with conjunctions (FAnd),
disjunctions (FOr), implications (FImpl) and negations (FNeg):

type formula =
| FVar ident
| FConst bool
| FAnd formula formula
| FOr formula formula
| FImpl formula formula
| FNeg formula

2 A formula is in NNF if the negation operator is only applied to sub-formulae that are literals.

P. Barroso, M. Pereira and A. Ravara 3

To represent the Hp set we define the type formula_wi, similar to the previous but without
the implication constructor.

We present now the implementation of the three functions.
The function Impl_Free removes all the implications. It is recursively defined in the

cases of the type formula and homomorphic, except in the implication case where it takes
advantage of the Propositional Logic Law:

A→ B ≡ ¬A ∨ B

It converts the constructions of the type formula for those of the type formula_wi and does
recursive calls over the arguments:
let rec impl_free (phi: formula) : formula_wi
= match phi with

| FNeg phi1 → FNeg_wi (impl_free phi1)
| FOr phi1 phi2 → FOr_wi (impl_free phi1) (impl_free phi2)
| FAnd phi1 phi2 → FAnd_wi (impl_free phi1) (impl_free phi2)
| FImpl phi1 phi2 → FOr_wi (FNeg_wi (impl_free phi1)) (impl_free phi2)
| FConst phi → FConst_wi phi
| FVar phi → FVar_wi phi

end

The functions NNFC converts formulas to NNF. It is recursively defined over a combination
of constructors: applying the Propositional Logic Law ¬¬A ≡ A the double negations are
eliminated and using the De Morgan Laws, negations of conjunctions become disjunction of
negations and negations of disjunctions become conjunction of negations. The code of the
function is as follows:
let rec nnfc (phi: formula_wi) : formula_wi
= match phi with

| FNeg_wi (FNeg_wi phi1) → nnfc phi1
| FNeg_wi (FAnd_wi phi1 phi2) → FOr_wi (nnfc (FNeg_wi phi1))

(nnfc (FNeg_wi phi2))
| FNeg_wi (FOr_wi phi1 phi2) → FAnd_wi (nnfc (FNeg_wi phi1))

(nnfc (FNeg_wi phi2))
| FOr_wi phi1 phi2 → FOr_wi (nnfc phi1) (nnfc phi2)
| FAnd_wi phi1 phi2 → FAnd_wi (nnfc phi1) (nnfc phi2)
| phi → phi

end

The CNFC function converts formulas from NNF to CNF. It is straightforwardly defined
except in the disjunction case, where it distributes the disjunction by the conjunction calling
the auxiliary function distr.
let rec cnfc (phi: formula_wi) : formula_wi
= match phi with

| FOr_wi phi1 phi2 → distr (cnfc phi1) (cnfc phi2)
| FAnd_wi phi1 phi2 → FAnd_wi (cnfc phi1) (cnfc phi2)
| phi → phi

end

The distr function uses the Propositional Logic Law

A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C),

the code is the following:

4 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

let rec distr (phi1 phi2: formula_wi) : formula_wi
= match phi1, phi2 with

| FAnd_wi phi11 phi12, phi2 → FAnd_wi (distr phi11 phi2)
(distr phi12 phi2)

| phi1, FAnd_wi phi21 phi22 → FAnd_wi (distr phi1 phi21)
(distr phi1 phi22)

| phi1,phi2 → FOr_wi phi1 phi2
end

Lastly, the code of the function (T) composes all of these functions:

let t (phi: formula) : formula_wi
= cnfc(nnfc(impl_free phi))

From this WhyML implementation it is possible to extract OCaml code (Appendix A). Both
implementations are close to the mathematical definitions thus demonstrating that functional
languages like OCaml are suitable languages for the presentation of these algorithms, providing
executable definitions without sacrificing rigor or clarity.

3 How to obtain the correctness

Since the T algorithm is a composition of three functions, the correctness of the algorithm is
the result of the correctness criteria of each of these three functions.

Criteria. For all functions the basic correctness criterion is that the input and output
formula must be logically equivalent. In addition it is required that:

– Impl_Free:
The result should not contain implications.

– NNFC:
The input and output formula should not contain implications.
The result must be in Negation Normal Form.

– CNFC:
The input and output formula should not contain implications.
The input and output formula must be in Negation Normal Form.
The result must be in Conjunctive Normal Form.

The correctness criteria of a function needs to be propagated to the following ones, to ensure
that each does not violate the conditions already established by the one previously executed.

Semantics of formulae. Since the basic criterion of correctness is the logical equivalence
of formulae, we need a function to assign a semantic to them:

type valuation = ident → bool

function eval (v: valuation) (f: formula) : bool
= match f with

| FVar x → v x
| FConst b → b
| FAnd f1 f2 → eval v f1 ∧ eval v f2
| FOr f1 f2 → eval v f1 || eval v f2
| FImpl f1 f2 → (eval v f1 → eval v f2)
| FNeg f → not (eval v f)

end

P. Barroso, M. Pereira and A. Ravara 5

This function takes an argument of type valuation assigning a value of type bool3 to each
variable of the formula, receives the formula to evaluate and returns a value of type bool. For
the base constructors FVar and FConst, the Boolean value of the variable and the value of
the constant, respectively, are returned. For the remaining constructor cases, the associated
formulae are recursively evaluated and the result translated into the corresponding WhyML
Boolean operation. The valuation function for the type of formulae formula_wi is similar.

4 Proof of correctness

The proof of correctness consists in demonstrating that each function respects the correctness
criteria defined in the previous section. We show herein the WhyML code accepted by Why3
as correct.

Correctness of Impl_Free. The absence of implication connectives is ensured by the
return type of the function (formula_wi); the equivalence of the formulae is ensured using the
formula valuation functions and we use the input formula as a measure to ensure termination.

let rec function impl_free (phi: formula) : formula_wi
ensures { forall v. eval v phi = eval_wi v result }
variant { phi }

= ...

Correctness of NNFC. The absence of implication connectives in the input and output
formulae is ensured by the type formula_wi. Additionally, to prove that the result is in the
NNF, we introduce a well-formedness predicate wf_negations_of_literals, which states
that the sub-formulae of the constructor FNeg_wi cannot contain the constructors FOr_wi,
FAnd_wi, or FNeg_wi:

predicate wf_negations_of_literals (f: formula_wi)
= match f with

| FNeg_wi f → (forall f1 f2. f 6= FOr_wi f1 f2 ∧ f 6= FAnd_wi f1 f2 ∧ f 6=
FNeg_wi f1) ∧ wf_negations_of_literals f

| FOr_wi f1 f2 | FAnd_wi f1 f2 → wf_negations_of_literals f1 ∧
wf_negations_of_literals f2

| FVar_wi _ → true
| FConst_wi _ → true

end

In the proof of correctness it is not possible to use the formula itself as a measure of
termination, since in the case of the distribution of negation by conjunction or disjunction,
constructors are added to the head constructors, making the structural inductive criterion
not applicable. Hence, we define a function that counts the number of constructors of each
formula and use it as termination measure:

function size (phi: formula_wi) : int
= match phi with

| FVar_wi _ | FConst_wi _ → 1
| FNeg_wi phi → 1 + size phi
| FAnd_wi phi1 phi2 | FOr_wi phi1 phi2 → 1 + size phi1 + size phi2

end

3 bool is the Boolean type of WhyML.

6 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

To ensure the number of constructors can never be negative, we use an auxiliary lemma:
let rec lemma size_nonneg (phi: formula_wi)

variant { phi }
ensures { size phi ≥ 0 }

= match phi with
| FVar_wi _ | FConst_wi _ → ()
| FNeg_wi phi → size_nonneg phi
| FAnd_wi phi1 phi2 | FOr_wi phi1 phi2 →

size_nonneg phi1; size_nonneg phi2
end

So, now with the well-formedness predicate and termination measure defined, we can close
the proof of correctness of the NNFC function:
let rec nnfc (phi: formula_wi) : formula_wi

ensures { forall v. eval_wi v phi = eval_wi v result }
ensures { wf_negations_of_literals result }
variant { size phi }

= ...

Correctness of CNFC. To ensure that a given formula is in CNF we introduce the well-
formedness predicates wf_conjunctions_of_disjunctions and wf_disjunctions. These
guarantee that after a disjunction there are no conjunctions:
predicate wf_conjunctions_of_disjunctions (f: formula_wi)
= match f with

| FAnd_wi f1 f2 → wf_conjunctions_of_disjunctions f1 ∧
wf_conjunctions_of_disjunctions f2

| FOr_wi f1 f2 → wf_disjunctions f1 ∧ wf_disjunctions f2
| FConst_wi _ → true
| FVar_wi _ → true
| FNeg_wi f1 → wf_conjunctions_of_disjunctions f1

end

predicate wf_disjunctions (f: formula_wi)
= match f with

| FAnd_wi _ _ → false
| FOr_wi f1 f2 → wf_disjunctions f1 ∧ wf_disjunctions f2
| FConst_wi _ → true
| FVar_wi _ → true
| FNeg_wi f1 → wf_disjunctions f1

end

Lastly, we add the predicates wf_conjunctions_of_disjunctions and wf_negations_of_-
literals to the post-conditions, to ensure that the result is in NNF and CNF, respectively;
to ensure that the input formula is in NNF, we also add the predicate wf_negations_of_-
literals to the pre-conditions. The code is as follows:
let rec cnfc (phi: formula_wi)

requires { wf_negations_of_literals phi }
ensures { forall v. eval_wi v phi = eval_wi v result }
ensures { wf_negations_of_literals result }
ensures { wf_conjunctions_of_disjunctions result }
variant { phi }

= ...

P. Barroso, M. Pereira and A. Ravara 7

Since the CNFC function uses the auxiliary function distr, we also need to prove its correctness.
We need to ensure the same criteria of the CNFC function, but because it is the distribution of
the disjunctions by the conjunctions, we must additionally ensure that the input formulae are
in the CNF, which is obtained by adding the predicates wf_conjunctions_of_disjunctions
and wf_negations_of_literals to the pre-conditions:

let rec distr (phi1 phi2: formula_wi)
requires { wf_negations_of_literals phi1 }
requires { wf_negations_of_literals phi2 }
requires { wf_conjunctions_of_disjunctions phi1 }
requires { wf_conjunctions_of_disjunctions phi2 }
ensures { forall v. eval_wi v (FOr_wi phi1 phi2) = eval_wi v result }
ensures { wf_negations_of_literals result }
ensures { wf_conjunctions_of_disjunctions result }
variant { size phi1 + size phi2 }

= ...

However in the distr function, it is not possible to prove that a disjunction of two formulae
in CNF is effectively a formula in CNF, because we must ensure that in a disjunction of two
formulae in CNF, the formulae do not contain the constructor FAnd_wi. To accomplish this,
we use an auxiliary lemma:

lemma aux: forall x. wf_conjunctions_of_disjunctions x →
wf_negations_of_literals x → not (exists f1 f2. x = FAnd_wi f1 f2) →
wf_disjunctions x

Correctness of T. With the proofs of correctness of each of the three functions performed,
we can now obtain the proof of correctness of the function T. This guarantees the criteria
ensured by the three functions: it does not contain implications due to the return type
(formula_wi); is in NNF (line 2); is in CNF (line 3); the result is equivalent to the input
formula (line 4):

let t (phi: formula) : formula_wi
ensures { wf_negations_of_literals result }
ensures { wf_conjunctions_of_disjunctions result }
ensures { forall v. eval v phi = eval_wi v result }

= cnfc (nnfc (impl_free phi))

The proof of this "direct style" implementation specification - close to classical mathematical
definitions - is immediate in Why3, making this exercise a successful proof of concept: classical
logical algorithms presented as functions to undergraduates can have a very close functional
implementation that is easy to prove correct with a high degree of automation.

5 Continuation-Passing Style

Continuation-Passing Style (CPS) is a programming style where the control is passed explicitly
in the form of a continuation, thus avoiding the overflow of the stack if the underlying compiler
optimizes recursive terminal calls. With an explicit stack structure in the code, it is possible
in the future to introduce a mechanism that allows step-by-step execution of the functions.

Process transformation into CPS. The transformation is performed mechanically ac-
cording to the following steps:

8 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

Given a function of type t’ → t, we add an argument which represents the continuation
(a function of type t → ’a) and change the return type of the function to ’a.
For the base cases instead of returning the desired values, we apply these values to the
continuation function.
For the remaining cases, we start by making a recursive call and construct the continuations
with the rest of the computation.
We add a main function that calls the function in CPS with the identity function as a
continuation.

We apply now this process to the functions presented in the previous section. With
respect to the Impl_Free function:
1. We add an argument to the function of type formula_wi → ’a and change the return

type to ’a:

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a) : ’a

2. For the base cases, we apply the desired values to the continuation function.

| FConst phi → k (FConst_wi phi)
| FVar phi → k (FVar_wi phi)

3. For the remaining cases, we start with a recursive call and define the continuations with
the rest of the computation:

| FOr phi1 phi2 → impl_free_cps phi1 (fun con → impl_free_cps phi2 (fun
con1 → k (FOr_wi con con1)))
| FAnd phi1 phi2 → impl_free_cps phi1 (fun con → impl_free_cps phi2 (fun
con1 → k (FAnd_wi con con1)))
| FImpl phi1 phi2 → impl_free_cps phi1 (fun con → impl_free_cps phi2 (fun

con1 → k (FOr_wi (FNeg_wi con) con1)))

4. Finally, we create the main function that calls the function in CPS with the identity
function as a continuation:

let impl_free_main (phi: formula) : formula_wi
= impl_free_cps phi (fun x → x)

We obtain the CPS version of the remaining functions in a similar way to this process
(the complete code is in Appendix B).

Correctness criteria. One interesting aspect of the proof of correctness of the functions in
CPS is the use of the corresponding function in direct style, since these are pure and total
functions, as specification, i.e., we simply assure that the result is equal to the result of the
functions in direct style, applied to the continuation.

For the Impl_Free function in CPS, it is enough to ensure that the result is equal to the
result of the direct-style Impl_Free function applied to the continuation:

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a) : ’a
variant { phi }
ensures { result = k(impl_free phi) }

= ...

P. Barroso, M. Pereira and A. Ravara 9

The specification of the function in direct style is then also applied to the function main,
responsible for calling the CPS functions with the identity function as a continuation:

let impl_free_main (phi: formula) : formula_wi
ensures { forall v. eval v phi = eval_wi v result }

= ...

The specifications of the NNFC and CNFC functions in CPS are similar to the specification of
the Impl_Free function referred above (Appendix C). However for the CNFC function it is
necessary to prove its pre-conditions. In particular, it is necessary to prove that the input
formula is in NNF.

A proof obligation is generated regarding the validity of the pre-condition whenever a
recursive call is made within a continuation. In order to prove such a proof obligation,
we need to specify the nature of the continuation arguments. Thus, we encapsulate the
wf_negations_of_literals predicate into a new type (an invariant type):

type nnfc_type = {
nnfc_formula : formula_wi

} invariant { wf_negations_of_literals nnfc_formula }
by{ nnfc_formula = FConst_wi true }

Since the return type of the function is changed, the proof of the post-conditions now involves
the comparison of two invariant types, which raises some interesting challenges.

Difficulties preventing a proof. Comparing two invariant types involves providing them
a witness, i.e., values with the concerned type; only then it is possible to prove that two
values of the same type respect the invariant. However as the invariant type in Why3 is
an opaque type, having only access to its projections, it is not possible to construct an
inhabitant of this type in the logic, thus making it impossible to compare them. This lemma
translates such a behavior:

lemma types: forall x y. x.cnfc_formula = y.cnfc_formula → x = y

It is not possible to prove this lemma because having only access to record projections can
not ensure that, in this case, the field cnfc_formula is the only field of this record type.

Given this limitation of Why3 [1], which in this case precludes the proof of the post-
condition, we have tried to compare the formula of each type with an extensional equality
predicate (==) and use this predicate as post-condition instead of polymorphic structural
equality (=).

predicate (==) (t1 t2: cnfc_type) = t1.cnfc_formula = t2.cnfc_formula

Even with extensional equality, it was not possible to complete the proof. This is due to the
fact that for the base cases, given the application to the continuation, we always come across
with comparison of records and in the other cases it is not possible to specify the functions of
continuation in the recursive calls. This lack of success led to the search for other approaches
that would, eventually, achieve the same advantages as the CPS transformation.

What is the problem with CPS?. The transformation in CPS always adds a function as an
argument, thus passing to a higher order function. Since Why3 is a platform that, for reasons
of decidability, operates on a first-order language, the solution is to "go back" to first order.
The defunctionalization technique emerged as a possible approach.

10 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

6 Defunctionalization

Defunctionalization is a program transformation technique to convert high-order programs
into first-order ones [13].

Transformation process. A defunctionalization consists of a "mechanical" transformation
in two steps:
1. Get a first order representation of the function continuations and replace the continuations

with this new representation.
2. Generate a new a function apply which replaces the applications of functions in the

original program.

Applying this process to the Impl_Free function in CPS lead us to represent the function
continuations in first-order:

type impl_kont =
| KImpl_Id
| KImpl_Neg impl_kont formula
| KImpl_OrLeft formula impl_kont
| KImpl_OrRight impl_kont formula_wi
| KImpl_AndLeft formula impl_kont
| KImpl_AndRight impl_kont formula_wi
| KImpl_ImplLeft formula impl_kont
| KImpl_ImplRight impl_kont formula_wi

The constructor KImpl_id represents the identity function, the constructor KImpl_Neg
represents the continuation of the case of the constructor FNeg_wi. As the remaining cases
contain two continuation functions, two constructors are created, one left and one right.
We chose to use the left and right nomenclatures because this represents the natural order
of the formula in the abstract syntax tree.

We then replace the continuations with the new representation of the continuations:

let rec impl_free_desf_cps (phi: formula) (k: impl_kont) : formula_wi
= match phi with

| FNeg phi1 → impl_free_desf_cps phi1 (KImpl_Neg k phi1)
| FOr phi1 phi2 → impl_free_desf_cps phi1 (KImpl_OrLeft phi2 k)
| FAnd phi1 phi2 → impl_free_desf_cps phi1 (KImpl_AndLeft phi2 k)
| FImpl phi1 phi2 → impl_free_desf_cps phi1 (KImpl_ImplLeft phi2 k)
...

end

The next step is to introduce an apply function, and replace the applications to the continu-
ation:

with impl_apply (phi: formula_wi) (k: impl_kont) : formula_wi
= match k with

| KImpl_Id → phi
| KImpl_Neg k phi1 → impl_apply (FNeg_wi phi) k
| KImpl_OrLeft phi1 k → impl_free_desf_cps phi1 (KImpl_OrRight k phi)
| KImpl_OrRight k phi2 → impl_apply (FOr_wi phi2 phi) k
| KImpl_AndLeft p k → impl_free_desf_cps p (KImpl_AndRight k phi)
| KImpl_AndRight k phi2 → impl_apply (FAnd_wi phi2 phi) k
| KImpl_ImplLeft phi1 k → impl_free_desf_cps phi1 (KImpl_ImplRight k phi)
| KImpl_ImplRight k phi2→ impl_apply (FOr_wi (FNeg_wi phi2) phi) k

end

P. Barroso, M. Pereira and A. Ravara 11

let rec impl_free_desf_cps (phi: formula) (k: impl_kont) : formula_wi
= match phi with

...
| FConst phi → impl_apply (FConst_wi phi) k
| FVar phi → impl_apply (FVar_wi phi) k

end

The result of the application of the defunctionalization transformation to the remaining
functions of the T algorithm in CPS is in Appendix D.

Proof of correctness. The defunctionalized program specification is the same as the
original program. However, given the existence of an additional function generated by the
defunctionalization process (the apply function), a specification must be provided. Since the
apply function simulates the application of a function to its argument, the only specification
we can give it is that its post-condition is the post-condition of the function k [12].

To be able to use the direct-style functions as a specification, we have created a post
predicate that gathers the post-conditions of the direct-style function. As for the apply
function, such a predicate performs case analysis on the continuation type and for each
constructor, we copy the post-condition present in the corresponding abstraction [12]. For
instance, for the Impl_Free function, we provide the following specification

let rec impl_free_desf_cps (phi: formula) (k: impl_kont) : formula_wi
ensures { impl_post k (impl_free phi) result }

= ...

with impl_apply (phi: formula_wi) (k: impl_kont) : formula_wi
ensures { impl_post k phi result }

= ...

where the impl_post predicate is:

predicate impl_post (k: impl_kont) (phi result: formula_wi)
= match k with

| KImpl_Id → let x = phi in x = result
| KImpl_Neg k phi1 → let neg = phi in impl_post k (FNeg_wi phi) result
| KImpl_OrLeft phi1 k → let hl = phi in impl_post k (FOr_wi phi

(impl_free phi1)) result
| KImpl_OrRight k phi2 → let hr = phi in impl_post k (FOr_wi phi2 hr) result
| KImpl_AndLeft phi1 k → let hl = phi in impl_post k (FAnd_wi phi

(impl_free phi1)) result
| KImpl_AndRight k phi2 → let hr = phi in impl_post k

(FAnd_wi phi2 hr) result
| KImpl_ImplLeft phi1 k → let hl = phi in impl_post k (FOr_wi

(FNeg_wi phi) (impl_free phi1)) result
| KImpl_ImplRight k phi2→ let hr = phi in impl_post k (FOr_wi

(FNeg_wi phi2) hr) result
end

The proof of the post-conditions of the NNFC and CNFC defunctionalized functions is similar
to the proof of the Impl_Free function (Appendix E). However, similar to the CPS proof,
for the CNFC function, we have to prove its pre-conditions. For this we have created the
invariant type wf_cnfc_kont with the well-formulated predicate wf_cnfc_kont as invariant:

type wf_cnfc_kont = {

12 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

cnfc_k: cnfc_kont;
} invariant { wf_cnfc_kont cnfc_k }

by { cnfc_k = KCnfc_Id }

Note that in this well-formulated predicate we just want to ensure the CNF for the formulae
that are already converted. Given that the formulae are only converted in the right continu-
ation, these and only these feature the wf_conjunctions_of_disjunctions predicate:

predicate wf_cnfc_kont (phi: cnfc_kont)
= match phi with

| KCnfc_Id → true
| KCnfc_OrLeft phi k → wf_negations_of_literals phi ∧ wf_cnfc_kont k
| KCnfc_OrRight k phi → wf_negations_of_literals phi ∧

wf_conjunctions_of_disjunctions phi ∧ wf_cnfc_kont k
| KCnfc_AndLeft phi k → wf_negations_of_literals phi ∧ wf_cnfc_kont k
| KCnfc_AndRight k phi → wf_negations_of_literals phi ∧

wf_conjunctions_of_disjunctions phi ∧ wf_cnfc_kont k
end

Lastly, the proof of the T function turns out to be similar to the direct-style proof referenced
in Page 7:

let t (phi: formula) : formula_wi
ensures { forall v. eval v phi = eval_wi v result }
ensures { wf_negations_of_literals result }
ensures { wf_conjunctions_of_disjunctions result }

= cnfc_desf_main(nnfc_desf_main(impl_desf_main phi))

Results. The proof of correctness of the defunctionalized version of the T algorithm is
naturally processed by Why3, with each proof objective being proved in less than one second
as shown in Figure 1.

7 Conclusion

Functional languages such as OCaml allow close implementations of mathematical definitions
without sacrificing clarity and rigor. These make them adequate to be pedagogically used as
an aid to the study and understanding of algorithms.

In this article, we present a proof of concept: the implementation and correctness proof of
the algorithm to convert propositional formulae to the Conjunctive Normal Form. Proof of
the two strands of the algorithm - direct style and defunctionalized - were achieved naturally
by Why3, making successful the proof of concept of formally verified implementations of
Computational Logic algorithms.

We intend to implement the step-by-step execution, through an explicit stack structure,
since each function call returns a function (continuation) that can be used as a block, thus
allowing to stop and return the execution. We also intend to apply this approach to other
Computational Logic algorithms, such as the Horn [8] algorithm.

P. Barroso, M. Pereira and A. Ravara 13

Proof obligations A
lt
-E

rg
o
2
.3
.0

C
V
C
4
1
.5

Z
3
4
.5
.0

lemma VC for wf distr kont 0.07
lemma VC for wf cnfc kont 0.07
lemma VC for var kont k nonneg 0.06
lemma VC for impl free desf cps 0.22
lemma VC for impl apply 0.27
lemma VC for impl desf main 0.13
lemma VC for nnfc desf cps 0.12
lemma VC for nnfc apply 0.53
lemma VC for nnfc desf main 0.12
lemma VC for distr desf cps lemma precondition 0.17

lemma precondition 0.21
lemma precondition 0.15
lemma postcondition 0.19
lemma precondition 0.17
lemma precondition 0.13
lemma precondition 0.13
lemma postcondition 0.43
lemma precondition 0.16
lemma precondition 0.15
lemma precondition 0.14
lemma postcondition 0.36
lemma precondition 0.11
lemma precondition 0.17
lemma postcondition 0.81

lemma VC for distr apply 0.20
lemma VC for distr desf main 0.12
lemma VC for cnfc desf cps 0.17
lemma VC for cnfc apply 0.45
lemma VC for cnfc desf main 0.11
lemma VC for t 0.14

Figure 1 Statistical result of defunctionalization proof obligations

14 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

References
1 Add injectivity for type invariant (#287) · Why3 Issues, https://gitlab.inria.fr/why3/why3/

issues/287
2 FACTOR: Functional ApproaCh Teaching pOrtuguese couRses, http://ctp.di.fct.unl.pt/

FACTOR/
3 Ager, M.S., Biernacki, D., Danvy, O., Midtgaard, J.: A functional correspondence between

evaluators and abstract machines. In: Proceedings of the International Conference on Principles
and Practice of Declarative Programming (2003)

4 Ben-Ari, M.: Mathematical Logic for Computer Science, 3rd Edition. Springer (2012), https:
//doi.org/10.1007/978-1-4471-4129-7

5 Enderton, H.B.: A mathematical introduction to logic. Academic Press (1972)
6 Filliâtre, J., Paskevich, A.: Why3 - Where Programs Meet Provers. In: Programming Lan-

guages and Systems. Lecture Notes in Computer Science, Springer, https://doi.org/10.1007/
978-3-642-37036-6_8

7 Hamilton, A.G.: Logic for mathematicians. Cambridge University Press (1988)
8 Horn, A.: On Sentences Which are True of Direct Unions of Algebras, vol. 16 (1951),

https://doi.org/10.2307/2268661
9 Huth, M., Ryan, M.D.: Logic in computer science - modelling and reasoning about systems (2.

ed.). Cambridge University Press (2004)
10 Leroy, X., Doligez, D., Frisch, A., Garrigue, J., Rémy, D., Vouillon, J.: The OCaml system

release 4.07: Documentation and user’s manual. Intern report, Inria (2018), https://hal.inria.
fr/hal-00930213

11 Mendelson, E.: Introduction to mathematical logic (3. ed.). Chapman and Hall (1987)
12 Pereira, M.: Desfuncionalizar para Provar. CoRR abs/1905.08368 (2019), http://arxiv.org/

abs/1905.08368
13 Reynolds, J.C.: Definitional Interpreters for Higher-Order Programming Languages. vol. 11,

pp. 363–397 (1998), https://doi.org/10.1023/A:1010027404223
14 Sabry, A., Felleisen, M.: Reasoning about Programs in Continuation-Passing Style. Lisp and

Symbolic Computation 6(3-4), 289–360 (1993)

https://gitlab.inria.fr/why3/why3/issues/287
https://gitlab.inria.fr/why3/why3/issues/287
http://ctp.di.fct.unl.pt/FACTOR/
http://ctp.di.fct.unl.pt/FACTOR/
https://doi.org/10.1007/978-1-4471-4129-7
https://doi.org/10.1007/978-1-4471-4129-7
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.1007/978-3-642-37036-6_8
https://doi.org/10.2307/2268661
https://hal.inria.fr/hal-00930213
https://hal.inria.fr/hal-00930213
http://arxiv.org/abs/1905.08368
http://arxiv.org/abs/1905.08368
https://doi.org/10.1023/A:1010027404223

P. Barroso, M. Pereira and A. Ravara 15

A OCaml code extracted from the WhyML implementation

type ident = string

type formula =
| FVar of ident
| FConst of bool
| FAnd of formula * formula
| FOr of formula * formula
| FImpl of formula * formula
| FNeg of formula

type formula_wi =
| FVar_wi of ident
| FConst_wi of bool
| FAnd_wi of formula_wi * formula_wi
| FOr_wi of formula_wi * formula_wi
| FNeg_wi of formula_wi

let rec impl_free (phi: formula) : formula_wi =
begin match phi with
| FNeg phi1 → FNeg_wi (impl_free phi1)
| FOr (phi1, phi2) → FOr_wi ((impl_free phi1), (impl_free phi2))
| FAnd (phi1, phi2) → FAnd_wi ((impl_free phi1), (impl_free phi2))
| FImpl (phi1, phi2) → FOr_wi ((FNeg_wi (impl_free phi1)), (impl_free phi2))
| FConst phi1 → FConst_wi phi1
| FVar phi1 → FVar_wi phi1
end

let rec nnfc (phi: formula_wi) : formula_wi =
begin match phi with
| FNeg_wi (FNeg_wi phi1) → nnfc phi1
| FNeg_wi (FAnd_wi (phi1, phi2)) → FOr_wi ((nnfc (FNeg_wi phi1)), (nnfc (FNeg_wi

phi2)))
| FNeg_wi (FOr_wi (phi1, phi2)) → FAnd_wi ((nnfc (FNeg_wi phi1)), (nnfc (FNeg_wi

phi2)))
| FOr_wi (phi1, phi2) → FOr_wi ((nnfc phi1), (nnfc phi2))
| FAnd_wi (phi1, phi2) → FAnd_wi ((nnfc phi1), (nnfc phi2))
| phi1 → phi1
end

let rec distr (phi1: formula_wi) (phi2: formula_wi) : formula_wi =
begin match (phi1, phi2) with
| (FAnd_wi (phi11, phi12), phi21) →

let o = distr phi12 phi21 in let o1 = distr phi11 phi21 in FAnd_wi (o1, o)
| (phi11, FAnd_wi (phi21, phi22)) →

let o = distr phi11 phi22 in let o1 = distr phi11 phi21 in FAnd_wi (o1, o)
| (phi11, phi21) → FOr_wi (phi11, phi21)
end

let rec cnfc (phi: formula_wi) : formula_wi =
begin match phi with
| FOr_wi (phi1, phi2) → let o = cnfc phi2 in let o1 = cnfc phi1 in distr o1 o
| FAnd_wi (phi1, phi2) →

16 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

let o = cnfc phi2 in let o1 = cnfc phi1 in FAnd_wi (o1, o)
| phi1 → phi1
end

let t (phi: formula) : formula_wi = cnfc (nnfc (impl_free phi))

P. Barroso, M. Pereira and A. Ravara 17

B CPS Version

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a) : ’a
= match phi with
| FNeg phi1 → impl_free_cps phi1 (fun con → k (FNeg_wi con))
| FOr phi1 phi2 → impl_free_cps phi1 (fun con → impl_free_cps phi2 (fun con1 →

k (FOr_wi con con1)))
| FAnd phi1 phi2 → impl_free_cps phi1 (fun con → impl_free_cps phi2 (fun con1
→ k (FAnd_wi con con1)))

| FImpl phi1 phi2 → impl_free_cps phi1 (fun con → impl_free_cps phi2 (fun con1
→ k (FOr_wi (FNeg_wi con) con1)))

| FConst phi → k (FConst_wi phi)
| FVar phi → k (FVar_wi phi)

end

let impl_free_main (phi: formula) : formula_wi
= impl_free_cps phi (fun x → x)

let rec nnfc_cps (phi: formula_wi) (k: formula_wi → ’a) : ’a
= match phi with

| FNeg_wi (FNeg_wi phi1) → nnfc_cps phi1 (fun con → k con)
| FNeg_wi (FAnd_wi phi1 phi2) → nnfc_cps (FNeg_wi phi1) (fun con → nnfc_cps (

FNeg_wi phi2) (fun con1 → k (FOr_wi con con1)))
| FNeg_wi (FOr_wi phi1 phi2) → nnfc_cps (FNeg_wi phi1) (fun con → nnfc_cps (

FNeg_wi phi2) (fun con1 → k (FAnd_wi con con1)))
| FOr_wi phi1 phi2 → nnfc_cps phi1 (fun con → nnfc_cps phi2 (fun con1 → k (

FOr_wi con con1)))
| FAnd_wi phi1 phi2 → nnfc_cps phi1 (fun con → nnfc_cps phi2 (fun con1 → k (

FAnd_wi con con1)))
| phi → k (phi)

end

let nnfc_main (phi: formula_wi) : formula_wi
= nnfc_cps phi (fun x → x)

let rec distr_cps (phi1 phi2: formula_wi) (k: formula_wi → ’a) : ’a
= match phi1, phi2 with

| FAnd_wi phi11 phi12, phi2 → distr_cps phi11 phi2 (fun con → distr_cps phi12
phi2 (fun con1 → k (FAnd_wi con con1)))

| phi1, FAnd_wi phi21 phi22 → distr_cps phi1 phi21 (fun con → distr_cps phi1
phi22 (fun con1 → k (FAnd_wi con con1)))

| phi1,phi2 → k (FOr_wi phi1 phi2)
end

let distr_main (phi1 phi2: formula_wi) : formula_wi
= distr_cps phi1 phi2 (fun x → x)

let rec cnfc_cps (phi: formula_wi) (k: formula_wi → ’a) : ’a
= match phi with

| FOr_wi phi1 phi2 → cnfc_cps phi1 (fun con → cnfc_cps phi2 (fun con1 →
distr_cps con con1 k))

| FAnd_wi phi1 phi2 → cnfc_cps phi1 (fun con → cnfc_cps phi2 (fun con1 → k (
FAnd_wi con con1)))

| phi → k (phi)

18 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

end

let cnfc_main (phi: formula_wi) : formula_wi
= cnfc_cps phi (fun x → x)

P. Barroso, M. Pereira and A. Ravara 19

C Correction of functions in CPS

C.1 NNFC

let rec nnfc_cps (phi: formula_wi) (k: formula_wi → ’a) : ’a
variant { size phi }
ensures { result = k (nnfc phi) }

= ...

let nnfc_main (phi: formula_wi) : formula_wi
ensures { forall v. eval_wi v phi = eval_wi v result }
ensures { wf_negations_of_literals result }

= nnfc_cps phi (fun x → x)

C.2 CNFC

let rec cnfc_cps (phi: formula_wi) (k: formula_wi → ’a) : ’a
requires{ wf_negations_of_literals phi }
variant { phi }
ensures{ result = k (cnfc phi)}

= ...

let cnfc_main (phi: formula_wi) : formula_wi
requires{ wf_negations_of_literals phi }
ensures{ forall v. eval_wi v phi = eval_wi v result }
ensures{ wf_negations_of_literals result }
ensures{ wf_conjunctions_of_disjunctions result}

= cnfc_cps phi (fun x → x)

20 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

D Defunctionalized Version

D.1 Types

type impl_kont =
| KImpl_Id
| KImpl_Neg impl_kont formula
| KImpl_OrLeft formula impl_kont
| KImpl_OrRight impl_kont formula_wi
| KImpl_AndLeft formula impl_kont
| KImpl_AndRight impl_kont formula_wi
| KImpl_ImplLeft formula impl_kont
| KImpl_ImplRight impl_kont formula_wi

type nnfc_kont =
| Knnfc_id
| Knnfc_negneg nnfc_kont formula_wi
| Knnfc_negandleft formula_wi nnfc_kont
| Knnfc_negandright nnfc_kont formula_wi
| Knnfc_negorleft formula_wi nnfc_kont
| Knnfc_negorright nnfc_kont formula_wi
| Knnfc_andleft formula_wi nnfc_kont
| Knnfc_andright nnfc_kont formula_wi
| Knnfc_orleft formula_wi nnfc_kont
| Knnfc_orright nnfc_kont formula_wi

type distr_kont =
| KDistr_Id
| KDistr_Left formula_wi formula_wi distr_kont
| KDistr_Right distr_kont formula_wi

type cnfc_kont =
| KCnfc_Id
| KCnfc_OrLeft formula_wi cnfc_kont
| KCnfc_OrRight cnfc_kont formula_wi
| KCnfc_AndLeft formula_wi cnfc_kont
| KCnfc_AndRight cnfc_kont formula_wi

D.2 Impl_Free Function

let rec impl_free_desf_cps (phi: formula) (k: impl_kont) : formula_wi
= match phi with

| FNeg phi1 → impl_free_desf_cps phi1 (KImpl_Neg k phi1)
| FOr phi1 phi2 → impl_free_desf_cps phi1 (KImpl_OrLeft phi2 k)
| FAnd phi1 phi2 → impl_free_desf_cps phi1 (KImpl_AndLeft phi2 k)
| FImpl phi1 phi2 → impl_free_desf_cps phi1 (KImpl_ImplLeft phi2 k)
| FConst phi → impl_apply (FConst_wi phi) k
| FVar phi → impl_apply (FVar_wi phi) k

end

with impl_apply (phi: formula_wi) (k: impl_kont) : formula_wi
= match k with

| KImpl_Id → phi

P. Barroso, M. Pereira and A. Ravara 21

| KImpl_Neg k phi1 → impl_apply (FNeg_wi phi) k
| KImpl_OrLeft phi1 k → impl_free_desf_cps phi1 (KImpl_OrRight k phi)
| KImpl_OrRight k phi2 → impl_apply (FOr_wi phi2 phi) k
| KImpl_AndLeft phi1 k → impl_free_desf_cps phi1 (KImpl_AndRight k phi)
| KImpl_AndRight k phi2 → impl_apply (FAnd_wi phi2 phi) k
| KImpl_ImplLeft phi1 k → impl_free_desf_cps phi1 (KImpl_ImplRight k phi)
| KImpl_ImplRight k phi2→ impl_apply (FOr_wi (FNeg_wi phi2) phi) k

end

let rec impl_desf_main (phi:formula) : formula_wi
= impl_free_desf_cps phi KImpl_Id

D.3 NNFC Function

let rec nnfc_desf_cps (phi: formula_wi) (k: nnfc_kont) : formula_wi
= match phi with

| FNeg_wi (FNeg_wi phi1) → nnfc_desf_cps phi1 (Knnfc_negneg k phi1)
| FNeg_wi (FAnd_wi phi1 phi2) → nnfc_desf_cps (FNeg_wi phi1) (Knnfc_negandleft

phi2 k)
| FNeg_wi (FOr_wi phi1 phi2) → nnfc_desf_cps (FNeg_wi phi1) (Knnfc_negorleft

phi2 k)
| FOr_wi phi1 phi2 → nnfc_desf_cps phi1 (Knnfc_orleft phi2 k)
| FAnd_wi phi1 phi2 → nnfc_desf_cps phi1 (Knnfc_andleft phi2 k)
| phi → nnfc_apply phi k

end

with nnfc_apply (phi: formula_wi) (k: nnfc_kont) : formula_wi
= match k with

| Knnfc_id → phi
| Knnfc_negneg k phi1 → nnfc_apply phi k
| Knnfc_negandleft phi1 k → nnfc_desf_cps (FNeg_wi phi1) (Knnfc_negandright k

phi)
| Knnfc_negandright k phi2 → nnfc_apply (FOr_wi phi2 phi) k
| Knnfc_negorleft phi1 k → nnfc_desf_cps (FNeg_wi phi1) (Knnfc_negorright k phi)
| Knnfc_negorright k phi2 → nnfc_apply (FAnd_wi phi2 phi) k
| Knnfc_andleft phi1 k → nnfc_desf_cps phi1 (Knnfc_andright k phi)
| Knnfc_andright k phi2 → nnfc_apply (FAnd_wi phi2 phi) k
| Knnfc_orleft phi1 k → nnfc_desf_cps phi1 (Knnfc_orright k phi)
| Knnfc_orright k phi2 → nnfc_apply (FOr_wi phi2 phi) k

end

let nnfc_desf_main (phi: formula_wi) : formula_wi
= nnfc_desf_cps phi Knnfc_id

D.4 Distr Function

let rec distr_desf_cps (phi1 phi2: formula_wi) (k: wf_distr_kont) : formula_wi
= match phi1,phi2 with

| FAnd_wi phi11 phi12, phi2 →
distr_desf_cps phi11 phi2 { distr_k = KDistr_Left phi12 phi2 k.distr_k }

| phi1, FAnd_wi phi21 phi22 →
distr_desf_cps phi1 phi21 { distr_k = KDistr_Left phi1 phi22 k.distr_k }

22 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

| phi1,phi2 → distr_apply (FOr_wi phi1 phi2) k
end

with distr_apply (phi: formula_wi) (k: wf_distr_kont) : formula_wi
= match k.distr_k with

| KDistr_Id → phi
| KDistr_Left phi1 phi2 k →

distr_desf_cps phi1 phi2 { distr_k = KDistr_Right k phi }
| KDistr_Right k phi1 →

distr_apply (FAnd_wi phi1 phi) { distr_k = k }
end

let distr_desf_main (phi1 phi2: formula_wi) : formula_wi
= distr_desf_cps phi1 phi2 { distr_k = KDistr_Id }

D.5 CNFC Function

let rec cnfc_desf_cps (phi: formula_wi) (k: wf_cnfc_kont) : formula_wi
= match phi with

| FOr_wi phi1 phi2 →
cnfc_desf_cps phi1 { cnfc_k = KCnfc_OrLeft phi2 k.cnfc_k }

| FAnd_wi phi1 phi2 →
cnfc_desf_cps phi1 { cnfc_k = KCnfc_AndLeft phi2 k.cnfc_k }

| phi → cnfc_apply phi k
end

with cnfc_apply (phi: formula_wi) (k: wf_cnfc_kont) : formula_wi
= match k.cnfc_k with

| KCnfc_Id → phi
| KCnfc_OrLeft phi1 k →

cnfc_desf_cps phi1 { cnfc_k = KCnfc_OrRight k phi }
| KCnfc_OrRight k phi2 →

cnfc_apply (distr_desf_cps phi2 phi { distr_k = KDistr_Id })
{ cnfc_k = k }

| KCnfc_AndLeft phi1 k →
cnfc_desf_cps phi1 { cnfc_k = KCnfc_AndRight k phi }

| KCnfc_AndRight k phi2 →
cnfc_apply (FAnd_wi phi2 phi) { cnfc_k = k }

end

let cnfc_desf_main (phi: formula_wi) : formula_wi
= cnfc_desf_cps phi { cnfc_k = KCnfc_Id }

P. Barroso, M. Pereira and A. Ravara 23

E Correction of defunctionalized functions

E.1 NNFC

predicate nnfc_post (k: nnfc_kont) (phi result: formula_wi)
= match k with

| Knnfc_id → let x = phi in x = result
| Knnfc_negneg k phi1 → let neg = phi in nnfc_post k phi result
| Knnfc_negandleft phi1 k → let hl = phi in nnfc_post k (FOr_wi phi (nnfc (

FNeg_wi phi1))) result
| Knnfc_negandright k phi2 → let hr = phi in nnfc_post k (FOr_wi phi2 hr) result
| Knnfc_negorleft phi1 k → let hl = phi in nnfc_post k (FAnd_wi phi (nnfc (

FNeg_wi phi1))) result
| Knnfc_negorright k phi2 →let hr = phi in nnfc_post k (FAnd_wi phi2 hr) result
| Knnfc_andleft phi1 k → let hl = phi in nnfc_post k (FAnd_wi phi (nnfc phi1))

result
| Knnfc_andright k phi2 → let hr = phi in nnfc_post k (FAnd_wi phi2 hr) result
| Knnfc_orleft phi1 k → let hl = phi in nnfc_post k (FOr_wi phi (nnfc phi1))

result
| Knnfc_orright k phi2 → let hr = phi in nnfc_post k (FOr_wi phi2 hr) result

end

let rec nnfc_desf_cps (phi: formula_wi) (k: nnfc_kont) : formula_wi
ensures{ nnfc_post k (nnfc phi) result }

= ...

with nnfc_apply (phi: formula_wi) (k: nnfc_kont) : formula_wi
ensures{ nnfc_post k phi result }

= ...

E.2 CFNC

predicate cnfc_post (k: cnfc_kont) (phi result: formula_wi)
= match k with

| KCnfc_Id → let x = phi in x = result
| KCnfc_OrLeft phi1 k → let hl = phi in cnfc_post k (distr hl (cnfc phi1))

result
| KCnfc_OrRight k phi2 → let hr = phi in cnfc_post k (distr phi2 hr) result
| KCnfc_AndLeft phi1 k → let hl = phi in cnfc_post k (FAnd_wi phi (cnfc phi1))

result
| KCnfc_AndRight k phi2 → let hr = phi in cnfc_post k (FAnd_wi phi2 hr) result

end

let rec cnfc_desf_cps (phi: formula_wi) (k: wf_cnfc_kont) : formula_wi
requires{ wf_negations_of_literals phi }
ensures{ cnfc_post k.cnfc_k (cnfc phi) result }

= ...

with cnfc_apply (phi: formula_wi) (k: wf_cnfc_kont) : formula_wi
requires{ wf_negations_of_literals phi }
requires { wf_conjunctions_of_disjunctions phi }
ensures{ cnfc_post k.cnfc_k phi result }

= ...

24 Animated Logic: Correct Functional Conversion to Conjunctive Normal Form

E.3 Distr Defunctionalized Function Specification

predicate wf_distr_kont (phi: distr_kont)
= match phi with

| KDistr_Id → true
| KDistr_Left phi1 phi2 k →

wf_negations_of_literals phi1 ∧ wf_conjunctions_of_disjunctions phi1 ∧
wf_negations_of_literals phi2 ∧ wf_conjunctions_of_disjunctions phi2 ∧
wf_distr_kont k

| KDistr_Right k phi →
wf_negations_of_literals phi ∧ wf_conjunctions_of_disjunctions phi ∧

wf_distr_kont k
end

type wf_distr_kont = {
distr_k: distr_kont;

} invariant { wf_distr_kont distr_k }
by { distr_k = KDistr_Id }

	Introduction
	Functional presentation of the algorithm
	How to obtain the correctness
	Proof of correctness
	Continuation-Passing Style
	Defunctionalization
	Conclusion
	OCaml code extracted from the WhyML implementation
	CPS Version
	Correction of functions in CPS
	NNFC
	CNFC

	Defunctionalized Version
	Types
	Impl_Free Function
	NNFC Function
	Distr Function
	CNFC Function

	Correction of defunctionalized functions
	NNFC
	CFNC
	Distr Defunctionalized Function Specification

