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Abstract 

 

Due to its fairly formal nature, the teaching of the subject of computation theory often 

presents itself as a major obstacle for computer students in general. The academic community 

has for some time been aware of this situation. Historically there have been developed many 

tools for the teaching of theory of formal languages and automata (FLAT). 

Despite the existence of a considerable number of them, occasionally a new tool emerges 

that contributes with something new, or some existing tools are extended with new 

functionalities. 

We propose to develop a library of functions in OCaml that support various concepts of 

FLAT, namely the definition of finite automata, regular expressions, pushdown automata, 

context-free grammars and Turing machines. We want to provide code that, whenever possible, 

follows closely the formalization of the concepts studied by the students. 

Another goal is to provide support for using this system inside Mooshak. 

Finally, an interesting technical problem we will need to handle is the nondeterminism and 

nontermination in parts of the code. 

In this report, first we discuss the properties of functional languages and why they are 

indicated for our project. Next, we give a small introduction to the FLAT concepts and discuss 

some issues about their implementation. Finally, there is a small review on the existing FLAT 

pedagogical tools. 
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Resumo 

 

Devido à sua natureza bastante formal, o ensino do tema da teoria da computação muitas 

vezes apresenta-se como um obstáculo para os estudantes de informática em geral. Há algum 

tempo que a comunidade académica tem conhecimento desta situação. Historicamente, foram 

desenvolvidas muitas ferramentas para o ensino da teoria das linguagens formais e automatos 

(FLAT). 

Apesar da existência de um número considerável deles, ocasionalmente surge uma nova 

ferramenta que contribui com algo novo, ou algumas ferramentas existentes são ampliadas com 

novas funcionalidades. 

Propomos desenvolver uma biblioteca de funções em OCaml que apoiam vários conceitos 

de FLAT, ou seja, a definição de autômatos finitos, expressões regulares, autômatos de pilha, 

gramáticas livres de contexto e máquinas de Turing. Queremos fornecer código que, sempre que 

possível, é fidedigno à formalização dos conceitos estudados pelos alunos. 

Um outro objetivo é fornecer o apoio para usar este sistema dentro com o Mooshak. 

Finalmente, um problema técnico interessante que nós precisaremos de assegurar é o não 

determinismo e a não terminação em partes do código. 

Neste relatório, primeiro discutimos as propriedades das linguagens funcionais e por que 

elas são indicadas para o nosso projeto. Em seguida, damos uma pequena introdução sobre 

conceitos FLAT e discutimos algumas questões sobre a sua implementação. Finalmente, é feita 

uma pequena revisão sobre as ferramentas pedagógicas de FLAT existentes. 

 

 

Palavras-chave: Teoria Das Linguagens Formais E Automatos, Programação Funcional, 

Linguagem OCaml, Ferramentas Pedagógicas 
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1. Introduction 

 

The teaching of formal language and automata theory is a staple of most computer science 

programs due to both its importance for direct application of the taught concepts in a 

professional setting that may require using those concepts, and its utility in molding the 

student’s minds to better critically think on how to solve the computer-science related problems 

that may occur during their academical and professional careers [1]. As such, there exists a 

continuous need for better methods of teaching these concepts. In response to this need, we can 

look to both new technologies and old methodologies to better understand how to contribute 

with new exciting solutions that can make formal language and automata theory more accessible 

to future students. 

1.1 Context 

Historically, for a long time, the academical community has realized the utility in 

developing and using helper tools for teaching formal language and automata theory, and during 

the years it has been shown that students tend to fair better when they actively use these tools as 

opposed to not being given the opportunity to use them. As such, a diverse pool of pedagogical 

tools have been developed over the years [2] in hopes of contributing to the cause, but curiously 

it has been observed that while some tools offer a very complete range of functionalities, it is 

when using a variety of different tools with even a few key distinguishing features that students 

obtain greater insight into the fundamentals of the subject [3].   

This MSc thesis will consist of developing, using the OCaml language, a pedagogical tool 

called OCaml-Flat. It is a library of types and functions that can be used as a tool for students’ 

personal study, for the integration in a testing environment (Mooshak) with various exercises 

for both in-class and home study, and for integration with a WEB application with interactive 

graphics.  

The functional paradigm was chosen for the implementation of this project because code 

written in this style is often very legible, concise and easy to understand without much mental 

fortitude, all properties that are heavily desired if one of the objectives is for the students to read 

and understand the code.  

The tool is planned to be used in future editions of the discipline of computation theory 

from the Faculty of Sciences and Technology of NOVA University of Lisbon (FCT/UNL). As 

such it will be developed following the formalisms adopted in the discipline as faithfully as 

possible.  
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1.2 Expected Contributions 

A very clear implementation in OCaml of a set of generators and language recognizers. 

Whenever possible, the code should follow closely the formalization of the concepts as 

studied by the students. 

Cater for an extensible design. In particular, it is important to identify shared features 

among the mechanisms and to factorize the corresponding code. 

Find reasonable ways to deal with the nondeterminism and nontermination of some 

operations. 

The toolkit should present itself as an OCaml module, intended to be used in the context of 

the OCaml interpreter. Developing a graphical interactive environment is outside the scope of 

this project. 

1.3 Document Structure 

This document is organized in the following chapters: 

 Chapter 1 - Introduction to the problem, its context, the proposed solution and the expected 

contributions. 

Chapter 2 - Detailed presentation of what is functional programming, explaining key aspects 

such as its history, characteristics, advantages, disadvantages and examples of how it is used to 

solve problems. 

Chapter 3 - Small introduction to the main concepts of formal language and automata 

theory, and discussion of some issues about their implementation. 

Chapter 4 - Survey on the existing pedagogical tools, their utility, their characteristics and 

history. 

Chapter 5 - Work plan for how this project will be approached. 
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2. Functional Programming 

      

The functional programming style was born form the acknowledgement that it is possible to 

express computation by only resorting to mathematical functions, applying functions to 

arguments and evaluating expressions [4]. In functional languages, functions play a central role 

where they are treated as first-class values, as we will explain further down this paper. 

Regardless of its base ingredient’s simplicity, functional languages help programmers in 

expressing their ideas with better clarity and certainty than with other programming styles, such 

as the imperative style for example.  

2.1 History 

In the early 1930s, even before the invention of what is widely considered as the first 

programmable computer, mathematician Alonzo Church introduced what could be considered 

the first functional language, the lambda-calculus [5]. During his research in the field of 

foundations of mathematics, Church was investigating a way of defining a different basis for 

mathematics built on functions, rather than sets, as a way of expressing the computational 

aspect of functions. Its influence on functional programming has had such impact, it most often 

represents the bases for modern functional languages [6]. 

In 1958 John McCarthy, during his work in MIT, gave origin to what is widely considered 

the first ever functional programming language, Lisp. According to “Conception, Evolution, and 

Application of Functional Programming Languages” by Paul Hudak, even though lambda-

calculus didn’t actually influence Lisp much, both made use of Church’s lambda notation [6]; 

beyond that not much similarities are found between the two languages. The project’s aim was 

for programming symbolic data computation. 

During the years that would follow, the functional programming community would continue 

to grow, and many new functional languages would be developed, which would push the 

understanding of functional concepts. Some of these new languages would include IPL, APL, 

ML (which would later originate OCaml), SASL, KRC, and Miranda. 

It was around the 1980s that 2 of the most important functional languages of today were 

born – OCaml and Haskall. The first language uses strict evaluation while the second uses non-

strict evaluation. In the case of OCaml, its origins are found in the LCF Robin Miller test 

system, which dates from 1962. The language began to be used as an Autonoma programming 

language from 1981 onwards, having evolved and gained new implementations. OCaml began 

to gain popularity and attract many programmers in the late 1990s. In the case of Haskell it was 
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created in a rather deliberate way through a committee with the mission of creating a common 

language for the non-strict functional programming community [7]. 

Since then, new functional languages have been developed, many of them, like Scala or F#, 

support not just the functional paradigm, but also other paradigms, mainly imperative and 

object-oriented; some languages, like Pearl and PHP, while not designed specifically for the 

functional paradigm, support some functional mechanisms.  

Even though its beginnings are rooted in the academical, and with the imperative paradigm 

remaining as the principle way in which most programmers today code [8], functional 

programming has been rising in mainstream popularity in the industry and commercial settings, 

with many famous applications such as Facebook, WhatsApp and Twitter running functional 

code, especially in their server side. 

2.2 Characteristics 

    Functional programming displays several core characteristics, namely:  

2.2.1 High-order functions  

One useful mechanism that is essential to functional programming are the high-order 

functions. High-order functions can receive functions as arguments and may also return new 

dynamically generated functions. A great example of this is the map function that applies a 

function to each element of a list. 

let rec map f l =  

 match l with  

   [] -> [] 

  | x::xs -> ( f x )::map f xs 

Another example is the gen function that receives an integer n and generates a new 

function dependent on n. 

let gen n = fun x -> x + n 

Being able to program well in the functional style involves knowing how to use high-order 

functions and in particular, recognizing good opportunities for using library defined high-order 

functions, such as map, flatMap, filter, exists, partition and others. 

2.2.2 First-class functions 

A programming language is said to have first-class functions if the functions have a status 

as important as the other predefined types, such as integer or real numbers. First-class functions 

are a requirement for functional languages. 

Concretely, in a functional language the functions can: (1) be passed as an argument for 

other functions; (2) be returned by other functions; (3) be used as constituent elements of data 

structures; (4) have specific literals for representing anonymous functions. Points (1) and (2) 
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show that without first-class functions we could not have high-order functions, for these pass 

the others as arguments and results. 

Permitting to treat functions as normal data has positive consequences at the level of 

program sophistication and the ideas that can be expressed in a natural way. In this first simple 

example, we have a function that implements function composition – a new function is 

generated using two existent functions. 

let compose f g = fun x -> f (g x) 

compose : ('a -> 'b) -> ('c -> 'a) -> ('c -> 'b) 

     In this second example, we show a classic representation of sets using only functions. It 

is known that a set is an identity whose main characteristic is the possibility of knowing if a 

value belongs to it or not. Thus, we can represent each set with a Boolean function: that 

function, when applied to a value produces true I the value belongs to the set and false if it does 

not. It is known as the feature function of the set:  

Empty set: 

let set0 = fun x -> false 

Universal set:  

let setu = fun x -> true 

Singular set constructor. Notice that we are representing an infinite set without any 

problems: 

let set1 x = fun y -> y = x 

Belongs to test:  

let belongs v s = s v 

Set union:  

let union s1 s2 = fun x -> s1 x || s2 x 

2.2.3 Referential transparency 

Pure functional programs are referentially transparent, meaning that everything which 

happens during the execution of a program literally depends on the text of the program, and 

there is no hidden entity (e.g. the imperative state) to influence the execution of the programs. 

Referential transparency is a property that allows replacing, in the text of the program, an 

expression for any other expression that evaluates to the same result, without changing the 

behavior of the program. Referential transparency is an important principle in mathematics, very 

much implicitly used in demonstrations. 

Without referential transparency, it is very hard to be sure that an expression can be 

replaced by another. To give an example, in general the following two expressions cannot be 

considered as equivalent:   

 f() + f()           2 * f() 
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With referential transparency, a function does not produce side-effects and returns always 

the same result for the same inputs. This property also helps immensely if we need to parallelize 

our programs. 

2.2.4 Recursion 

In the functional world, repetition is expressed using recursion [12], as opposed to the 

imperative world where repetition is expressed with iteration. 

In functional languages, programmers who pay special attention to code clarity and 

legibility, use recursion as base for a programming technic which involves reducing each 

problem to a simpler version of the same problem. It is thus an inductive technic and the 

resulting functions are inductive. Here is a known example of an inductive function: 

let rec fact n = if n = 0 then 1 else n * fact (n-1) 

In any case, functional languages can also use recursion to simulate iteration. Simulated 

iteration forces the reader of the code to think in a way that is considered less human-like and 

more machine-like, but which allows for better efficiency, if it is strictly necessary. The gain in 

efficiency results from the fact that the generality of functional languages being able to optimize 

the simulated iteration without consuming execution stack (tail recursion optimization). 

Example: 

let rec factX n r = 

 if n = 0 then r else factX (n-1) (r*n) 

let fact n = factX n 1 

2.2.5 Declarativity 

The philosophy behind declarative programming is to provide an abstraction with which 

programmers could write and/or read code and understand it’s goal without the need to “run the 

algorithm in their heads”, but rather to express the essence of what that code is trying to 

achieve, almost as if the programmers were “telling the program what they want it to do, 

without step-by-step instructions”.  

The first version of the fact function from the previous is declarative. The function 

expresses a truth – fact n = n * fact (n-1) – that the machine uses to produce the 

correct results.  

The second version of the function is not declarative because it describes with minuteness, 

step-by-step, a process of calculating the result. Caution, it is possible to mathematically prove 

that both versions of the function are equivalent and from the mathematical viewpoint it may 

not be of much relevance distinguishing the two forms. However, for a human, the declarative 

form is relevant: functions become simpler to invent, to understand, and it becomes simpler to 

intuitively argument over the correctness of functions. 

There is a diverse category of languages that support declarative languages (e.g. logical 

languages, restriction languages, HTML), with the functional languages category also included 
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in this group. This aspect is widely considered to provide with clear, simple to read code that we 

think makes functional programming the paradigm of choice for the implementation of our 

project. 

2.2.6 Static typing 

There are functional languages with dynamic typing (List, Scheme, Lua) and there are 

functional languages with static typing (OCaml, Scala, Haskell). In the case of languages with 

static typing, the generality supports type inference, with each declaring the argument’s type 

being optional.  

2.2.7 Evaluation strategy 

 Functional languages can be divided into those who use strict evaluation and those who use 

non-strict evaluation. The difference is that with strict evaluation each function call, the 

arguments are always evaluated before the call is executed. With non-strict evaluation however, 

the arguments are always passed unevaluated, and are evaluated inside the function only when 

their values are needed. 

Haskell is an example of a functional language that uses non-strict evaluation. OCaml uses 

strict evaluation, albeit there are available non-strict mechanism in the data type Stream and the 

lazy module. 

2.2.8 Algebraic data types and pattern-matching 

Most functional languages, such as OCaml, support the definition of algebraic data types, 

which are typing made from diverse variants. For example, the next type, which defines lists of 

values, possesses two variants: Nil for empty lists and Cons for non-empty lists. 

type 'a list = Nil | Cons of 'a * 'a list 

It is normal the existence of operations that only apply to values of certain variants. For 

example, for lists, the operation for obtaining the tail only applies to non-empty lists.  

The mechanism of pattern-matching allows for dealing with the various variants of an ADT 

in a practical, elegant and type-safe matter. The mechanism is quite sophisticated: To start with, 

it introduces a notion of pattern – a pattern is a special expression with intuitive syntax that 

represents a set of values. When we verify pairing between a value and a pattern, some of the 

value’s components become immediately available through the pattern’s variables. The human 

being is accustomed in using patterns in its interaction with the real world. The patterns of 

functional languages help in turning programs more legible and easier to write. 

In the case of OCaml, pattern pairing is implemented in the construction of “match”. Here is 

a small example, where only two patterns are used (occurring to the left of the arrow). The 

function tests if the letter ‘a’ occurs in a list of characters. 

let containsA list = 

 match list with 
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   Nil -> false 

  | Cons(x,xs) -> x = 'a' || containsA xs 

2.2.9 Imperative mechanisms 

It may seem strange, but the generality of functional languages is not pure, which means 

that they include imperative mechanisms, including state. In the world of functional 

programming, programs are mostly written in a functional manner, but imperative mechanisms 

are used in specific, well justified situations. 

     For example, if the problem involves state, it is best to deal with it using interactive 

mechanisms, as opposed to trying to simulate them with functional mechanisms. Think of a 

calculator with registers: it is best to represent the registers using a set of mutable cells. If a 

language provides appropriate linguistic mechanism to deal directly with the situation, then it is 

best to use those mechanisms. 

     Another situation: there are certain operations that are inefficient in their functional way 

and it may be worthwhile to think of imperative alternatives. For example, adding a value to the 

end of a list, causes implicit duplication of that list. In the case of an absurdly grand list, it may 

be advised to think twice. 

2.3 Advantages 

Compared to imperative programming, the functional paradigm displays certain properties 

that give it some advantages [9]. 

Pure functional programming precludes the notion of state as such it only really receives an 

input and produces an output. This can be of great help in a variety of aspects, including 

legibility, parallelization and special technics such as currying.  

Since a functional program doesn’t have mutable variables or state, and with the added 

characteristics of higher-order function and declarativity, it is possible to write code that is 

considerably more succinct and legible compared to other paradigms; because there are no 

variables or side-effects one must keep track of while mentally thinking of the code’s execution, 

this allows the programmer to better concentrate on what they want to compute instead of how 

they will compute it, which will lead to safer, more bug-free code. 

Another interesting advantage granted by the lack of states and side-effects, and the 

irrelevance of the order in which a program executes its functions for the computing of its 

output, is that it allows for easier program parallelization, since the possibility of a function 

interfering with the output of another function running concurrently is inexistent.  

Thanks to considering all functions as first-class (that is, they can be passed as arguments to 

other functions, including themselves), functional programming allows for the use of certain 

coding technics such as currying, a technique that allows programmers to work with functions 

that take multiple arguments, and use them in settings where functions might only take one 
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argument. This allows not only for better code legibility, but in some cases, code that is more 

efficient. 

Lazy evaluation and data immutability can in some specific cases increase efficiency by 

allowing the compiler to perform less strict evaluations on its expressions. 

Higher order functions capture generical code patterns (e.g. map, filter, etc.), which help 

program in a concise way, without constant repetition of the same formulas. 

2.4 Disadvantages 

Although many benefits are to be gained from using the functional paradigm, it isn’t 

without its flaws [9]. 

The real world is imperative, and the notion of state is useful to better express various real-

world problems in code, such as a calculator with memory registers or accessing an external 

database. While most functional languages (even pure ones) allow for methods to simulate 

states, these can often-times break legibility and conciseness of the code, thus losing the 

benefits of not using states. 

Another problem is the typically less efficient use of CPU and memory management, in 

large part due to the lack of mutable data structures whose implementations translates better into 

various hardware. Not only that, but the lack of state forces us to continually declare and create 

objects instead of assigning new values to already existing ones, which also leads to the need for 

more memory in our programs. 

In languages such as Haskell that use lazy evaluation, there can be the occurrence of 

memory leaks. There are some special techniques to deal with them. 

2.5 Examples of functional programming 

We now show two small examples that illustrate the practical use of some features of these 

languages. These examples include the use of algebraic data types, pattern-matching and 

recursion. 

This section also prepares to the next chapter where we will discuss the recognition of a word 

by a non-deterministic finite authenticity and this requires the use of the breath-first strategy. 

2.5.1 Binary search tree example using depth-first 

In OCaml, we can define a binary tree [10] using the following ADT:  

Type α tree = Nil | Node of α * α tree * α tree 

      In the example below, belongs1 is a function that receives a value “val” and a binary tree 

“tree”, and checks if there is a node in the “tree” whose value equals val. This function was 

written using intuition and aiming for simplicity. Not surprisingly, in the end we verify that the 

function implements a depth-first algorithm [11]. 
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let rec belongs1 val tree = 

 match tree with 

  Nil -> false 

  | Node(x,left,right) -> val = x  

  || find val left || find val right 

Notice how the function is declarative. What this code affirms is the following: (1) the value 

cannot occur in an empty tree; (2) for the value to occur in a non-empty tree, either it occurs at 

the root, or at the left sub-tree, or at the right sub-tree. If we wish to analyze the operational 

effects of this function’s execution, we see that first we test if the value occurs at the root; if not 

then we search for the value in all of the left sub-tree; only if the value was not found until this 

point do search in the right tree. Thus, we show how the function is depth-first. 

2.5.2 Binary search tree example using breadth-first 

The following example resolves the same problem as “belongs1” but now using a breadth-

first strategy. In breadth-first, the search works on the nodes of the tree at each horizontal level 

at a time, starting on the root, only moving to the next level if the value is not found in the 

previous level. The presented solution has a certain degree of artificiality because it is necessary 

for a way of representing the notion of horizontal level. To represent each horizontal level, we 

use a list of trees, and even in the first call we need to pass the original tree inside a list. 

let rec belongs2 val Level = 

 match level with 

   [] -> false 

   | Nil::ls -> find val ls 

    | Node(x,l,r)::ls ->  

    x = val || find val (ls@[l,r]) 

It is pertinent to consider three cases relative to the first argument: (1) if the list is empty, 

certainly the value does not occur; (2) if the NIL tree is at the head of the list, that tree can be 

ignored for not having any element; (3) if a non-empty tree is at the head of the list, if the value 

occurs at the root of that first tree the value is considered found, if it does not occur then it is 

necessary to check if it occurs in the rest of the list with the two sub-trees added at the end. 

Since in the third case the node’s successors are added to the end of the list instead of the 

start, the function evaluates the tree in breadth-first.  
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3. Formal language and automata theory 

 

For this project, we will be adhering to the formalisms and naming conventions adopted in 

the theory of computation class of the computer science engineering course in the Faculty of 

Sciences and Technology, NOVA University of Lisbon. This is important because it will allow 

us to maintain coherence between what the students learn during the class and what they might 

learn or revise using our toolkit, minimizing the student’s efforts in adapting their knowledge 

from the classes to their usage of our toolkit in an attempt to advance their understanding of 

formal language and automata theory. 

Theory of computation is a branch of computer science and mathematics that studies the 

properties of computation. Among other aspects, it also studies which problems can be solved 

by a computer and among these which can be programmed efficiently. 

In his book “Introduction to the theory of computation”, Michael Sipser [1] divides the 

subject into three main branches: automata and languages, computability theory and complexity 

theory. Due to the objectives of our project, we only wish to elaborate on the automata and 

languages branch.  

3.1 Chomsky Hierarchy 

Before diving into explaining the main FLAT concepts we will discuss for our project, we 

think it is of interest to present the following concept, the Chomsky hierarchy [1]. 

In FLAT, a formal grammar is a set of rules for producing strings in a formal language. 

According to Chomsky, we can divide these grammars into four groups based on the type of 

languages they can generate. Note that the levels with the lowest number identifier represent the 

languages that require more capable recognition mechanisms and have more general generation 

rules. 

The hierarchy is as follows: Type 0 grammars generate recursively enumerable languages, 

that is, languages whose words can be generated by a computationally universal machine; Type 

1 grammars generate context-sensitive languages; Type 2 generates context-free languages; 

Type 3 generates regular languages. Every regular language is context-free, every context-free 

language is context-sensitive, every context-sensitive language is recursively enumerable. 

Not all context-free languages are regular, and the same logic could be expressed to the rest 

of the discussed languages. 

The following section will describe the key FLAT concepts we pretend to cover with our 

project, as well as establish the terminology used throughout the framework. 
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3.2 FLAT concepts covered in the project 

3.2.1 Regular expressions 

Regular expressions are special expressions which represent languages whose words have a 

simple structure. By starting with a finite number of words and then applying regular operations 

such as union, catenation and iteration closure, we can define regular expressions. They can be 

seen as language generators but are less expressive than context-free grammars. 

An example of a regular expression could be a(a + b)*, which denotes the language of 

all the words over the alphabet {a, b} starting with an “a”. 

In the real world, regular expressions are used in search engines, lexical analysis, word 

processors, text editors and others; many programming languages even provide regular 

expression capabilities.  

3.2.2 Finite automata 

Finite Automata is a simple mathematical model of computation that can be used to specify 

languages. The expressive power of the model is relatively weak and is only capable of 

describing languages with very regular structure. Nevertheless, it is a useful model with many 

theoretical and practical applications. 

In this model, the specification of each language is accomplished via recognition. Each 

particular Finite Automaton (FA) recognizes some language in the sense that the FA checks 

whether a word belongs or do not belongs to the language.  

Finite automata are formally defined by the following 6-tuplet: a finite set of states; a finite 

set of symbols (an alphabet); a list of transitions where each transition describes the progression 

between two states by consuming a symbol; one initial state; and zero or more accepted states 

(states that symbolize the success of a computation).  

Finite automata are regular language recognizers, as they are able to recognize all languages 

that can be obtained from a regular expression and are less capable than pushdown automata. 

For example, the automaton in Figure3.1 recognizes the previously discussed language denoted 

by all words over {a, b} starting with an a.  
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Figure 3.1-Deterministic Finite Automata 

These automata can be either deterministic or nondeterministic, where determinism in this 

context means that for each state a symbol can only transition to one state, whereas in 

nondeterminism, transitions can happen from a state to one or more states using the same 

symbol, and some states can also transition to another state without consuming any symbol. In 

this project we will be working with both deterministic and nondeterministic finite automata. 

As contrast to the previous example which was deterministic, here is an example of a non-

deterministic finite automaton: 

 

Figure 3.2- Non-Deterministic Finite Automata 

Notice how the automata can transition from state 2 to 3 without consuming any symbol, 

thus making it non-deterministic. 

Finite automata are widely used in software engineering, compilers, network protocols, as 

well as in other areas not strictly to due with computer science, such as philosophy, biology and 

linguistics. 

3.2.3 Context-free grammars  

Context-free grammars are a type of formal grammars used to describe all possible strings 

in a specified formal language, more precisely, they are context-free language generators, and 

are represented as the following 4-tuplet: a non-empty finite set of nonterminal characters, each 
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representing a part of a sentence; a set of terminals different from the first set, that defines the 

alphabet of the language; a set of rules composed of a character and a string of characters and 

terminals; and the start symbol, an element of the first set that represents the entire sentence.  

Here is an example of a context-free grammar that generates the language of all words over 

the alphabet {a, b} that have an equal number of both letters a and b, and where all occurrences 

of “a” are at the left of all occurrences of “b”:  

P -> ε | aPb 

Notice how P calls itself, indeed recursion plays an important role in defining context-free 

grammar. 

Context-free grammars are mainly used for describing structures for programming 

languages and are also used in linguistics to describe the structure of sentences and words in 

natural languages. 

Context-free grammars correspond to a more powerful mechanism of generating languages 

than that of regular expressions. There is no regular expression equivalent to the previous 

grammar. 

3.2.4 Pushdown automata 

A pushdown automaton is a type of automata that uses a stack, can be both deterministic or 

non-deterministic, and are expressed through the following 7-tuplet: a finite set of states; a finite 

set for the input alphabet; a finite set for the stack alphabet; a finite set representing the 

transition relation; a starting state; the initial stack symbol; and a set of accepted states. 

Compared to finite automata, they can handle theoretically infinite amounts of data. A word is 

accepted by a push-down automaton only if it leads to both a state of acceptance and the stack 

being empty.  

They are language recognizers. It is interesting to note that non-deterministic pushdown 

automata are more powerful than the deterministic ones. This means that there are some 

context-free languages that are only recognized by a non-deterministic automaton. In general 

pushdown automata are more powerful than finite automaton but less powerful than Turing 

machines. 

Here is the example of a push-down automaton for the language previously given as 

example in the context-free grammar section. 
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Figure 3.3-Pushdown Automata 

Notice that for every “a” consumed we add it to the stack, while for every “b” we remove an 

“a” from the stack, thus the word needs to have the same number of occurrences of a and b to be 

accepted. 

Their main practical applications involve parser designing, but are also used in other areas 

such as online transaction systems. 

3.2.5 Turing machines   

A Turing machine is a computation model that consists of a single read and write control 

unit and an infinite tape where the unit can write or read symbols. The tape is initialized only 

with the initial input and the rest is blank. In the lectures, the Turing machine presented is stack-

based, which is represented by the following 6-tuplet: a finite, non-empty set of control states; 

an input alphabet which keeps track of process data; a starting state; the initial memory; a 

transition relation that specifies the rules followed by the computation; and a list of final states. 

Due to its relative complexity compared to the other four concepts, we decided to omit an 

example for a Turing machine. 

A Turing machine is a formal language recognizer, that is, it recognizes languages 

generated by any grammar, including unrestricted grammars. They are used in a variety of 

computer science fields, including algorithmic complexity theory, machine learning, software 

engineering, computer networks and evolutionary computations.  

3.3 Implementing FLAT concepts in the functional paradigm 

During the implementation of our project, there will be various properties we wish for our 

end product to possess. The most important aspect of our code will be for it to, whenever 

possible, be as legible, intuitive and faithful to the formalisms adopted by the computation 

theory class, even if it means sacrificing some efficiency. 

 For some problems the most natural translation of its solution into functional code will 

produce the desired outcomes and be very easy to understand. But there are other problems 

where the natural solution enters an infinite cycle, and so we need to write less institutive code 

using special techniques. 
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To better demonstrate this point, as well as give a general impression of the challenges that 

will be faced during this project, we will showcase two examples involving finite automata. The 

first problem has a solution that is simple and intuitive and will follow the lectures closely; for 

the second problem the intuitive solution enters an infinite loop, forcing us to resort to less 

intuitive techniques.  

To start we need to introduce an OCaml representation for finite automata. A finite 

automaton is characterized by an initial state (represented by a simple name), a set of transitions 

between states, labelled by symbols, and a set of acceptance states. We also need a 

representation for words, and we will use a simple character list. The following code represents 

the definition of an automata. 

type symbol = char       

type word = symbol list 

type state = string 

type states = state list 

type transition = 

      state    

    * symbol   

    * state    

type transitions = transition list 

type fAutomaton = { 

      initialState: state; 

      transitions: transitions; 

      acceptStates: states     } 

3.3.1 Reachable example 

An example of a typical FLAT problem that translates nicely into functional code that is 

intuitively understood is the reachable problem, where given an initial state and the list of 

transitions for an automaton, we want to obtain all states reachable from the initial state 

(including the initial state itself).  

Before we write our main function however, we need to define the auxiliary functions 

gcut. 

Without bothering too much about the implementation details of said function, the function 

gcut receives as arguments a specified state and list of transitions for an automaton, and 

returns the pair formed by the list of transitions starting from that state, and the list of all 

remaining transitions (those that do not start from that state. 

Here is the OCaml code for the reachable function as stated before, which receives as 

arguments a state s and the list of transitions t for an automaton, and computes the list of states 

reached by the state s through transitions in t: 

let rec reachable s t  = 

 let (a,b) = gcut s t in 

     s::flatMap (fun (_,_,n) -> reachable n b) a 
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The reachable function declares the following: The reachable states are s and all the states 

reachable from all neighbor of s.  

3.3.2 Accept example 

To give an example of a typical FLAT problem that requires a non-intuitive solution, we 

will discuss the problem of testing the acceptance of a word in a finite automaton. To resolve 

the problem in its maximum generality we will consider that the automata can be non-

deterministic. Notice that in this situation it will be necessary to use a breadth-first exploration 

strategy, for only then can we guarantee the detection of the acceptance situation; thankfully we 

already saw the usage of depth-first and breadth-first strategies in the previous chapter, so 

hopefully the reader will have a better base understanding of these strategies, which will be 

important for grasping the full scope of our example. 

Before jumping to the main problem, we will need a function that, given a state, a symbol 

and a set of transitions, will give us all the states for which we can transition to. Here is the code 

of said function. 

let nextStates sy st t = 

 let n = List.filter 

  (fun (a,b,c) -> st = a && sy = b) t in  

   List.map (fun (_,_,d) -> d) n 

3.3.2.1 Deterministic Finite Automata accept example using depth-first 

 

In the first solution we will attempt to use the definitions of the documentation as 

straightforward as possible, and we reach the following function: 

let rec accept1 w st t sta =  

 match w with 

   [] -> List.mem st sta 

  | x::xs -> let n = nextStates x st t in     

         List.exists (fun c -> acc xs c t sta) n  

The function receives as arguments a word, a current state, a list of the automata’s 

transitions and the list of its accepted states. The first call passes the full word, the initial state, 

the transitions and the accepted states. Notice that it has a similar structure to the belongs1 

function previously presented in chapter 2. 

The function analyses a word which we pretend to verify. In the case of the empty word, it 

is accepted by the automata only if the current state is of acceptance. If the word displays the 

form x::xs, it is necessary to consider every state to where we can transition with the symbol x 

and check if from any of those states the sub-word xs can be accepted. This is a typical 

inductive form of reasoning. The high-order function List.exist deals with a variable 

number of recursive calls and tests if any of those calls guarantee acceptance. 
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This implementation is depth-first because each call inside List.exists is evaluated 

until de end. This function makes sense only for DFAs because otherwise the analysis could 

become trapped in an unproductive path. 

Note that to simplify we assumed that the automata does not contain any empty transitions. 

3.3.2.2 Non-deterministic Finite Automata accept example using breadth-first 

The previous solution easily enters in infinite loops because the automaton can contain 

loops. It is necessary to devise a sophisticated and less intuitive solution using breadth-first. 

The function receives the list of transitions and accepted states, but its first argument is a list 

of pairs (state, word), as explained below. The initial call passes the pair (initial state, word), 

and both transitions and accepted states lists. 

let accept2 cf t sta =  

 match cf with  

   [] -> false 

  | (st, [])::ls -> List.mem st sta || acc ls t sta 

    | (st,x::xs)::ls -> let n = nextStates x st t in  

   let cfn = List.map (fun c -> (c,xs)) n in  

    acc (ls@cfn) t sta 

The function has three branches, just as the function belongs2. The hardest part to 

explain is the fact that the arguments w and st of the function accept1 now appear in the form 

of a list of configurations which are ordered pairs containing a state and a word. In reality, the 

function uses a breadth-first strategy to go through an implicit search tree which may be infinite. 

Each ramification of that implicit tree is determined by the state from which we want to perform  

recognition and the word we want to recognize. 

Thus, if the list of configurations is empty, then we can decide that the word is not accepted. 

If the list is not empty and the first configuration of the list has an empty word, then that word is 

only accepted if the state of the same configuration is of acceptance; otherwise it is necessary to 

analyse the remaining configurations. If the list is not empty and the first configuration of the 

list has a non-empty word x::xs, it is necessary to consider all the states to where we can 

transition using the symbol x and create new configurations with the sub-word xs to be analysed 

in the future. 

This is breadth-first because when consuming the symbol x, we add new configurations to 

the end of the list (as expressed by ls@cfn), thus assuring that we first analyse the 

configurations that are waiting longer. 

If the word belongs to the language accepted by the automata, then the function will 

eventually terminate and produce the result true. If the word does not belong to the language 

recognized by the automata, then the function can terminate with the result false, or it may never 

terminate, originating uncertainty over the real result. We are present before a semi-decidable 
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algorithm. If we want to deal the problem of non-termination, we have to limit in some way the 

depth of the search over the implicit tree where the function accept2 traverses. 
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4. Pedagogical  Tools  

 

The study of Formal Language and automata theory presents the computer science student 

with the opportunity to better understand the context and fundamentals behind some problems 

they might face during their future professional careers, which in turn will allow them to better 

think of the possible solutions and make the better decisions, thus contributing to improved 

productivity and work quality. 

While the subject proves to be indispensable for any computer science curriculum, its 

sometimes abstract and mathematical nature presents an added challenge for the student to fully 

grasp its essence. As such, many teachers have found that the use of both visual and non-visual 

auxiliary learning tools, which provide a more concrete foundation on the topic, appear to 

improve the student’s understanding of the taught concepts, thus facilitating both the teaching 

and learning of this subject. 

Since the early 1960s, many learning tools have been developed, most of them would 

distinguish themselves from the competition by focusing on a certain niche or characteristic that 

the other tools didn’t support; eventually, during the years some have become more popular 

than others.  

According to “Fifty Years of Automata Simulation: A Review” [2], these tools could be 

divided into two main groups: one represents the text-based tools that use a collection of 

symbols to form a language, which we then use to write the definition of an automata, which is 

then processed using either compilers or interpreters; the second represents the tools that accept 

an automata specification (either in a structured or diagrammatic form) and then simulates its 

behavior in a graphical environment, often with the added implementation of animations.  

The following section will aim at describing the state of the current landscape pertaining to 

these tools. 

 

4.1   Classification and characteristics 

Some like “Online Turing Machine Simulator” [13], an online Turing machine simulator, 

allow the user to define a Turing machine using the tool’s syntax, and then write and input for 

the program to validate. The user can also select from a collection of pre-defined examples, 

view tutorials and even define the speed at which the simulation runs. 

Others, such as “Abstract Machine Simulator” provide a module for generating words 

accepted by the automata being texted. 
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Some also allow the user to draw their own automata for all testing purposes, using drag 

and drop styled interfaces, one criticism these sometimes face is how disorganized and 

confusing writing bigger, more complex automata can become with these tools. 

There are also various tools that allow for the conversion of nondeterministic automata into 

deterministic automaton, and then into a Turing machine. 

Here is a list of most of these tools one might find while exploring the subject. 

In 1963, Coffin et all published a paper entitled “Simulation of Turing machine on a digital 

computer” [14], which was perhaps the first ever automata simulator study, in it the authors 

describe the tool being text-based and adopting the classical Turing machine representation of 

quintuplet for each transition. 

In 1972, on what would probably be the first graphic-based tool, Gilbert and Cohen 

published the paper “A simple hardware model of a Turing machine: its educational use” [15] 

where they describe a Turing machine simulator and its utility for teaching programming 

fundamentals. 

Most tools until 1992 would then only support either Turing machines or Finite and 

pushdown automata, such as “Turing Machine Simulator” [16], “Tutor – A Turing Machine 

Simulator” [17] and “Turing’s World” [18]; only in 1992 with “Hypercard Automata 

Simulation” [19] by Hannai et al did a tool support all 3 types, and in 1993, the c++ “Formal 

Language and Automata Package” [20] (the precursor to JFLAP) not only supported the 3 types 

mention, but also non-determinism. 

In 1997, Head et al developed “A Simple Simulator for State Transitions” [21], which had 

support for a finite state machine simulator, a nondeterministic pushdown automaton simulator 

and a Turing machine simulator, all based on notational languages with rigid formats. 

New tools have been developed since, other similar to the ones discussed so far include 

“Language Emulator” [22] by Vieira et al, “Automata en Java” [23] by Dominguez, “Turing 

Building Blocks” [24] by Luce and Rodger, a Java computability toolkit by Robinson et al [25], 

“PetC” by Bergström [26], “Thoth” by García-Osorio 

4.2.   Noteworthy tools 

The following tools deserve a more profound introduction due to either their popularity, 

concept or availability. 

4.2.1.   Automata Tutor v2.0 

Automata Tutor [29] is a web-browser application for users to test their knowledge on DFA, 

NFA, NFA to DFA conversion and regular expression constructions by providing exercises in 

which the user must use a drag and drop styled graphics tool to create the requested automata, or 

imput the correct regular expression in a more text-based window. Once submitted the answer, 
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the site will calculate a score from 0 to 10 based on how closed the input is to the desired 

solution and provide feedback on how to improve the answer. 

In the paper “Automated Grading of DFA Constructions ∗”, Rajeev Alur et al explain that 

the grading of the exercises is done through the conversion of DFAs into a MOSEL formula and 

vice-versa, which allows for a method of evaluating the answer; the actual grading is achieved 

with an algorithm that divides all errors into 3 common types, them being an attempt to provide 

a solution to a different problem, the lack of a transition or final state, and an error on a small 

part of the answer string. 

In the paper, the authors also concluded after testing for comparison between the gradings 

of the site and those of actual instructors, that the tool was able to provide a quality of grading 

equivalent to that of human graders. 

4.2.2.   Racso 

Racso [30] is a web-browser application created in 2012 by Carles Creus and Guillem 

Godoy of Polytechnic University of Catalonia, with the objective of providing their students 

with exercises on FLAT, specifically context-free grammars, it is entirely text-based. According 

to their paper “Automatic Evaluation of Context-Free Grammars (System Description)”, the 

tool consists of multiple exercises on FLAT concepts such as deterministic finite automata, 

context-free grammars, push-down automata, reductions between undecidable problems and 

reductions between NP-complete problems. The idea is that for every exercise describing a 

specific language, the student as to solve it by providing a (sometimes unambiguous) grammar 

that generates that language, the correctness of the answer is achieved by comparing the 

student’s grammar with the professor’s known-to-be-correct grammar to see if they generate the 

same language. Since equivalence of context-free-grammars is an undecidable problem, the 

work-around is to define a length L and test if there is a word with length lesser or equal then L 

that can be generated by only one of the two grammars, if such word exists, either both 

grammars are not equivalent (thus the answer is wrong) or the value of L was too low. The 

reason this works is due to the academic nature of the exercises, both grammars and L will 

almost always be of sufficiently small size for the comparison to behave adequately. The 

comparison itself is based on hashing, SAT and automata. 

To use this tool as of this writing, the user must visit the site 

(https://racso.cs.upc.edu/juezwsgi/index) where they may choose from a plethora of 

representative exercises, divided into various classifications according to their specific topic, 

most noticeably exercises on DFA, CFG, regular and context-free operations. After selecting the 

exercise, a window with some instructions and a small text console will display and allow the 

user to input their solution, once submitted the site will display whether the answer was correct 

or not. 
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The site also allows the user to create an account which they can then use to gain access to a 

collection of exams on the subject of the exercises.  

4.2.3.   JFLAT 

Perhaps the most popular and well-documented tool, JFLAP [31] is a Java implemented 

toolkit that, according to Susan Rodger et al in “A Hands-on Approach to FLA with JFLAP” 

began in 1990 as a collection of c++ and x windows tools called NPDA, when professor Susan 

Rodger of at the time Rensselaer Polytechnic Institute began teaching a FLAT course and found 

that students requested further counselling and feedback on their understanding of the subject. 

By 1993 the program already had support for simulating non-deterministic push-down 

automata, deterministic push-down automata and Turing machines with building blocks. In 

1996 the tool switched to Java and in 2001 to Swing, suffering a complete rewrite and even saw 

a change in some of the algorithms. During the initial years, various FLAT concepts and tools 

have been implemented, such as L-systems in 1993, pumping lemma in 1996, a brute-force 

parser, LL parser and SLR parser between 1996 and 1997, and regular expressions in 1999. 

Some of the more recent additions include Moore and Mealy machines, Batch grading, regular 

pumping lemma proof, context-free lemma proof and various preference settings such as 

defining the empty string (epsilon or lambda).  

To use the tool as of this writing, a user must go to the JFLAT official website 

(http://www.jflap.org) and fill in a form on why they are interested on the program, as well as 

country and faculty where they come from. Afterwards, they will be allowed to download an 

executable jar file which comprises of the JFLAT toolkit. The site also features a plethora of 

tutorials and even video instructions on how to use most of JFLAP’s functionalities, and how 

instructors can use them to better explain the subject. 

The main features of JFLAT allows the user to create various types of automata and regular 

languages; convert NFA into regular grammar or expressions; create context-free languages 

such as push-down automata or context-free grammar, as well as to exert transformations on 

them; define Turing machines (either multi-tape or building blocks based) and create/render L-

systems. The tool provides a drag and drop interface which allows the user to define a finite 

automata, then by entering a test word (various words can also be tested in simultaneous), the 

program can either compute whether the string is accepted, generate a diagram showing the 

behavior of the automata for a word up to a specific symbol, or analyze the consumption of its 

symbols one by one. One interesting functionality is the ability to show in parallel the possible 

transitions and state of non-deterministic automata for an input word. The tool also supports the 

ability to analyze certain properties and identify them for the student to better grasp them, like 

highlighting lambda-transitions or non-deterministic states. For pumping lemma, the tool 

implements an interface where you “play a game” against the computer, where each side will 
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decide on an input until the end of the proof is reached, the interface allows the user to click a 

button that displays an explanation of the problem’s context. 

The popularity of JFLAP is widely considered unparalleled compared to other FLAT tools; 

according to the JFLAP website, from 2004 to 2008 the tool had seen over 64.000 downloads in 

161 different countries, and as of this date the site lists over 10 books that mention the usage of 

JFLAP, and over 30 published papers that reported having used, or even modifying JFLAP. One 

could argue that these numbers alone would suffice as testament to the importance of the tool’s 

role in helping teach FLAT, but in "Increasing Engagement in Automata Theory with JFLAP," 

Susan Rodgers et al conducted a 2 year study to see the responses of students from over 10 

faculties when using JFLAP for their FLAT courses, and the results showed that more than half 

the enquired students admitted that the usage of the tool had either made learning the subject 

easier or more engaging. 

4.2.4.   PFLAT 

PFLAT [32] is a text-based SWI-Prolog implemented tool from 2005, which focuses on 

providing a library of Prolog predicates that map the concepts of formal language and automata 

theory as closely as possible to their respective mathematical and formal definition. The tool 

provides the source code as to better help students grasp the intricacies of the subject. The tool 

allows for the instructors to adapt its definitions and naming’s to those they prefer and provides 

both student and teacher with the ability to extend the library with their own implementations of 

further concepts from the subject. To facilitate its usage, PFLAT also allows for various 

operators on words, regular languages and automata, such as concatenation, union, closure, and 

which ever possible operator its user might want to implement.  

In “A Prolog Toolkit for Formal Languages and Automata“, the authors describe some of 

the functionalities and concepts and how they are implemented in PFLAT, and provide as 

example the definition of all binary words with an even number of 1’s. In PFLAT, an alphabet 

can be defined and checked against the computation of the set of symbols of a random set 

expression; a user can check for declaration errors and even have them shown on screen as error 

messages; words can be represented, with operations for concatenation and N-th power already 

available; predicates on words for checking if they belong to a specific alphabet, to generate all 

words over an alphabet, or to compare to another word and conclude if they respect a certain 

lexical order, for dealing with prefix, suffix and sub-word, and with the possibility to 

change/add predicates; operands for languages including literal sets of words, names of 

alphabets and language definitions, as well as operators for set, Kleene star, positive closure, 

product and power; defining regular language with regular expressions or finite automata; 

expressions can be build over finite automata, with the latter having support for the union, 
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complement, intersection, closure, minimization and determinization operators; and few more 

features. 

As of its debut, the tool only had support for regular languages and pushdown-automata. 

Later versions of the system have received support for all the other classic mechanisms. 

4.3.   Conclusion 

It is interesting to note that, even though FLAT as been stabilized for some years, the advent 

of these learning tools has introduced new interesting challenges for the field of computation 

theory. 

An observation one could draw from the analysis of the history of FLAT tools, is that most 

of them were, in the early years, mostly textual, and as time passed, more graphics-based tools 

were being made; a possible reason for this shift could be attributed simply to the evolution of 

more powerful, easy to use frameworks and mechanisms that facilitated the appearance of such 

tools. 

While a great number of different tools already exist for helping teach formal language and 

automata theory, it is the communities’ belief that the welcoming of further tools with different 

interpretations and concepts will help complement already existing ones and provide both 

student and teacher with often new functionalities to apply to their learning and teaching 

respectively. 
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5. Work plan and solution 

5.1 Solution   

The objective is to develop, using the OCaml language, a pedagogical tool called OCaml-

Flat to support students in learning the concepts of formal languages and automata theory 

(FLAT). The functionalities of the system will follow the documentation of the discipline of 

computation theory, organized by Professor António Ravara. In this documentation, several 

choices are made, especially regarding the selection of specific algorithms. 

The tool will be developed into a library of types and functions developed in OCaml. There 

are three intended uses for this library: 

6 1-using the tool within the textual interface of the OCaml interpreter, students will have the 

possibility to define, load, test and manipulate FLAT mechanisms. However, it is necessary 

to realize that for a student to use this system, they will have to spend some time learning 

the data representation and API of the tool. 

7 2-the tool will be used in the context of the Mooshak automatic evaluation system. The 

idea is to support the creation of FLAT exercises, ready to use by students. In this case, 

each student only needs to know the format of the answer, without needing to know the 

API of the tool. Examples of Exercises: (1) write a finite automata that recognizes the 

language of binary numbers that are multiples of 3; (2) Minimize the given finite automata; 

(3) Convert a given regular expression into a regular grammar; (4) Give four examples of 

words that are recognized by a given stack automata. 

8 3-On top of the tool will be developed a WEB application with interactive graphics. But 

this point is part of a separate master’s dissertation, which runs in parallel with this one. 

5.2.   Validation 

All examples of the Computation theory documentation, and probably a few more, will be 

translated into the tool formats, which will allow for some confidence in the implementation 

correction but also to critically assess the usability of the system. Note that the system will need 

to implement some semi-decidable procedures and special tests will be created for these cases. 

Also, regarding usability, the opinion of professors of disciplines related to FLAT will be 

requested. 

5.3.   Work Plan 

Objectives are better reached when divided into detailed sub-goals with concise yet flexible 

deadlines. As such we have devised a work plan for how we aim to proceed during the 
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development of this Mc’s thesis. Figure5.1 shows an overview of the scheduling for this work 

plan. 

 

Figure 5.1- MSc’s thesis work plan 

9 1-Review of some functional programming techniques in OCaml. Writing some functions 

on finite automatons to gain some initial experience and to gain a more accurate notion 

about future work. This part has already been carried out. (15Jun-15Jul). 

10 2-develop the essential of the project, in this first phase limited to finite automata and 

regular expressions. There are many non-trivial algorithms that need to be developed and 

they should be expressed in a very clear manner and as close as possible to the TC 

documentation. In order to be able to support all kinds of exercises for students, some 

additional less orthodox functions should be added to the API, such as a function of 

accepting words for regular expressions (although this is a mechanism) and a word 

generation function for finite automata (despite being a recognizer mechanism). Some of 

the algorithms involve non-determinism and non-terminations, which makes emerging 

some challenging practical problems that will be interesting to deal with. (15Jul-31Oct). 

11 3-Repeat what was described in the previous point, but now for push-down automata and 

for context-independent grammars. Many of the situations to be dealt with will be repeated, 

but now appear in more complex versions, more difficult to handle, thus demanding greater 

mental effort due to the significant complexity of the mechanisms. (01Nov-31Dec). 

12  4-Create a rich library of exercises to test the system, both directly in the OCaml 

interpreter, as well as within Mooshak. In addition, if necessary, develop in partnership 

with the colleague of the other project, a small number of other functions, which result 

from the needs of the parallel project that involves a WEB application for FLAT. (1Jan-

31Jan). 

13 5-Ideally, features for Turing machines will also be programmed. In the case of scarce 

revealing time, this will be the omitted part. (1Feb-29Feb). 

14 6-Writing of the master's thesis. (1Jan-25Mar). 

15  
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