

i

 João Miguel Gago Gonçalves

 Bachelor in Computer Science and Engineering

 OCaml-Flat - An OCaml Toolkit for experimenting with

formal languages theory

Dissertation to obtain the Master’s Degree in

Computer Science and Engineering

Advisor: Artur Miguel Dias, Assistant Professor,

1 Faculty of Sciences and Technology,

2 NOVA University of Lisbon

Co-advisor: António Ravara, Associate Professor,

Faculty of Sciences and Technology,

NOVA University of Lisbon

July, 2019

ii

iii

Acknowledgments

This work was partially supported by the Tezos foundation through a grant for the

project “FACTOR - A Functional Programming Approach to Teaching Portuguese

Foundational Computing Courses”.

iv

v

Abstract

Due to its fairly formal nature, the teaching of the subject of computation theory often

presents itself as a major obstacle for computer students in general. The academic community

has for some time been aware of this situation. Historically there have been developed many

tools for the teaching of theory of formal languages and automata (FLAT).

Despite the existence of a considerable number of them, occasionally a new tool emerges

that contributes with something new, or some existing tools are extended with new

functionalities.

We propose to develop a library of functions in OCaml that support various concepts of

FLAT, namely the definition of finite automata, regular expressions, pushdown automata,

context-free grammars and Turing machines. We want to provide code that, whenever possible,

follows closely the formalization of the concepts studied by the students.

Another goal is to provide support for using this system inside Mooshak.

Finally, an interesting technical problem we will need to handle is the nondeterminism and

nontermination in parts of the code.

In this report, first we discuss the properties of functional languages and why they are

indicated for our project. Next, we give a small introduction to the FLAT concepts and discuss

some issues about their implementation. Finally, there is a small review on the existing FLAT

pedagogical tools.

Keywords: Formal Language And Automata Theory, Functional Programming, OCaml

Language, Pedagogical Tools

vi

vii

Resumo

Devido à sua natureza bastante formal, o ensino do tema da teoria da computação muitas

vezes apresenta-se como um obstáculo para os estudantes de informática em geral. Há algum

tempo que a comunidade académica tem conhecimento desta situação. Historicamente, foram

desenvolvidas muitas ferramentas para o ensino da teoria das linguagens formais e automatos

(FLAT).

Apesar da existência de um número considerável deles, ocasionalmente surge uma nova

ferramenta que contribui com algo novo, ou algumas ferramentas existentes são ampliadas com

novas funcionalidades.

Propomos desenvolver uma biblioteca de funções em OCaml que apoiam vários conceitos

de FLAT, ou seja, a definição de autômatos finitos, expressões regulares, autômatos de pilha,

gramáticas livres de contexto e máquinas de Turing. Queremos fornecer código que, sempre que

possível, é fidedigno à formalização dos conceitos estudados pelos alunos.

Um outro objetivo é fornecer o apoio para usar este sistema dentro com o Mooshak.

Finalmente, um problema técnico interessante que nós precisaremos de assegurar é o não

determinismo e a não terminação em partes do código.

Neste relatório, primeiro discutimos as propriedades das linguagens funcionais e por que

elas são indicadas para o nosso projeto. Em seguida, damos uma pequena introdução sobre

conceitos FLAT e discutimos algumas questões sobre a sua implementação. Finalmente, é feita

uma pequena revisão sobre as ferramentas pedagógicas de FLAT existentes.

Palavras-chave: Teoria Das Linguagens Formais E Automatos, Programação Funcional,

Linguagem OCaml, Ferramentas Pedagógicas

viii

ix

Contents

Acknowledgments .. iii

Abstract .. v

Resumo ... viiii

Contents .. ix

List of figures .. xi

1. Introduction ... 1

1.1 Context .. 1

1.2 Expected Contributions ... 2

1.3 Document Structure .. 2

2. Functional Programming ... 3

2.1 History ... 3

2.2 Characteristics ... 4

2.2.1 High-order functions ... 4

2.2.2 First-class functions ... 4

2.2.3 Referential transparency ... 5

2.2.4 Recursion ... 6

2.2.5 Declarativity .. 6

2.2.6 Static typing ... 7

2.2.7 Evaluation strategy .. 7

2.2.8 Algebraic data types and pattern-matching.. 7

2.2.9 Imperative mechanisms .. 8

2.3 Advantages .. 8

2.4 Disadvantages ... 9

2.5 Examples of functional programming ... 9

2.5.1 Binary search tree example using depth-first ... 9

2.5.2 Binary search tree example using breadth-first .. 10

3. Formal language and automata theory ... 11

3.1 Chomsky Hierarchy.. 11

3.2 FLAT concepts covered in the project ... 12

3.2.1 Regular expressions ... 12

3.2.2 Finite automata ... 12

3.2.3 Context-free grammars ... 13

x

3.2.4 Pushdown automata ... 14

3.2.5 Turing machines .. 15

3.3 Implementing FLAT concepts in the functional paradigm .. 15

3.3.1 Reachable example ... 16

3.3.2 Accept example ... 17

4. Pedagogical Tools ... 21

4.1 Classification and characteristics ... 21

4.2. Noteworthy tools ... 22

4.2.1. Automata Tutor v2.0 ... 22

4.2.2. Racso.. 23

4.2.3. JFLAT .. 24

4.2.4. PFLAT ... 25

4.3. Conclusion .. 26

5. Work plan and solution .. 27

5.1 Solution ... 27

5.2. Validation ... 27

5.3. Work Plan ... 27

Bibliography .. 29

xi

List of figures

Figure 3.1-Deterministic Finite Automata .. 13

Figure 3.2- Non-Deterministic Finite Automata ... 13

Figure 3.3-Pushdown Automata ... 15

Figure 5.1- MSc’s thesis work plan .. 28

xii

1

1. Introduction

The teaching of formal language and automata theory is a staple of most computer science

programs due to both its importance for direct application of the taught concepts in a

professional setting that may require using those concepts, and its utility in molding the

student’s minds to better critically think on how to solve the computer-science related problems

that may occur during their academical and professional careers [1]. As such, there exists a

continuous need for better methods of teaching these concepts. In response to this need, we can

look to both new technologies and old methodologies to better understand how to contribute

with new exciting solutions that can make formal language and automata theory more accessible

to future students.

1.1 Context

Historically, for a long time, the academical community has realized the utility in

developing and using helper tools for teaching formal language and automata theory, and during

the years it has been shown that students tend to fair better when they actively use these tools as

opposed to not being given the opportunity to use them. As such, a diverse pool of pedagogical

tools have been developed over the years [2] in hopes of contributing to the cause, but curiously

it has been observed that while some tools offer a very complete range of functionalities, it is

when using a variety of different tools with even a few key distinguishing features that students

obtain greater insight into the fundamentals of the subject [3].

This MSc thesis will consist of developing, using the OCaml language, a pedagogical tool

called OCaml-Flat. It is a library of types and functions that can be used as a tool for students’

personal study, for the integration in a testing environment (Mooshak) with various exercises

for both in-class and home study, and for integration with a WEB application with interactive

graphics.

The functional paradigm was chosen for the implementation of this project because code

written in this style is often very legible, concise and easy to understand without much mental

fortitude, all properties that are heavily desired if one of the objectives is for the students to read

and understand the code.

The tool is planned to be used in future editions of the discipline of computation theory

from the Faculty of Sciences and Technology of NOVA University of Lisbon (FCT/UNL). As

such it will be developed following the formalisms adopted in the discipline as faithfully as

possible.

2

1.2 Expected Contributions

A very clear implementation in OCaml of a set of generators and language recognizers.

Whenever possible, the code should follow closely the formalization of the concepts as

studied by the students.

Cater for an extensible design. In particular, it is important to identify shared features

among the mechanisms and to factorize the corresponding code.

Find reasonable ways to deal with the nondeterminism and nontermination of some

operations.

The toolkit should present itself as an OCaml module, intended to be used in the context of

the OCaml interpreter. Developing a graphical interactive environment is outside the scope of

this project.

1.3 Document Structure

This document is organized in the following chapters:

 Chapter 1 - Introduction to the problem, its context, the proposed solution and the expected

contributions.

Chapter 2 - Detailed presentation of what is functional programming, explaining key aspects

such as its history, characteristics, advantages, disadvantages and examples of how it is used to

solve problems.

Chapter 3 - Small introduction to the main concepts of formal language and automata

theory, and discussion of some issues about their implementation.

Chapter 4 - Survey on the existing pedagogical tools, their utility, their characteristics and

history.

Chapter 5 - Work plan for how this project will be approached.

3

2. Functional Programming

The functional programming style was born form the acknowledgement that it is possible to

express computation by only resorting to mathematical functions, applying functions to

arguments and evaluating expressions [4]. In functional languages, functions play a central role

where they are treated as first-class values, as we will explain further down this paper.

Regardless of its base ingredient’s simplicity, functional languages help programmers in

expressing their ideas with better clarity and certainty than with other programming styles, such

as the imperative style for example.

2.1 History

In the early 1930s, even before the invention of what is widely considered as the first

programmable computer, mathematician Alonzo Church introduced what could be considered

the first functional language, the lambda-calculus [5]. During his research in the field of

foundations of mathematics, Church was investigating a way of defining a different basis for

mathematics built on functions, rather than sets, as a way of expressing the computational

aspect of functions. Its influence on functional programming has had such impact, it most often

represents the bases for modern functional languages [6].

In 1958 John McCarthy, during his work in MIT, gave origin to what is widely considered

the first ever functional programming language, Lisp. According to “Conception, Evolution, and

Application of Functional Programming Languages” by Paul Hudak, even though lambda-

calculus didn’t actually influence Lisp much, both made use of Church’s lambda notation [6];

beyond that not much similarities are found between the two languages. The project’s aim was

for programming symbolic data computation.

During the years that would follow, the functional programming community would continue

to grow, and many new functional languages would be developed, which would push the

understanding of functional concepts. Some of these new languages would include IPL, APL,

ML (which would later originate OCaml), SASL, KRC, and Miranda.

It was around the 1980s that 2 of the most important functional languages of today were

born – OCaml and Haskall. The first language uses strict evaluation while the second uses non-

strict evaluation. In the case of OCaml, its origins are found in the LCF Robin Miller test

system, which dates from 1962. The language began to be used as an Autonoma programming

language from 1981 onwards, having evolved and gained new implementations. OCaml began

to gain popularity and attract many programmers in the late 1990s. In the case of Haskell it was

4

created in a rather deliberate way through a committee with the mission of creating a common

language for the non-strict functional programming community [7].

Since then, new functional languages have been developed, many of them, like Scala or F#,

support not just the functional paradigm, but also other paradigms, mainly imperative and

object-oriented; some languages, like Pearl and PHP, while not designed specifically for the

functional paradigm, support some functional mechanisms.

Even though its beginnings are rooted in the academical, and with the imperative paradigm

remaining as the principle way in which most programmers today code [8], functional

programming has been rising in mainstream popularity in the industry and commercial settings,

with many famous applications such as Facebook, WhatsApp and Twitter running functional

code, especially in their server side.

2.2 Characteristics

 Functional programming displays several core characteristics, namely:

2.2.1 High-order functions

One useful mechanism that is essential to functional programming are the high-order

functions. High-order functions can receive functions as arguments and may also return new

dynamically generated functions. A great example of this is the map function that applies a

function to each element of a list.

let rec map f l =

 match l with

 [] -> []

 | x::xs -> (f x)::map f xs

Another example is the gen function that receives an integer n and generates a new

function dependent on n.

let gen n = fun x -> x + n

Being able to program well in the functional style involves knowing how to use high-order

functions and in particular, recognizing good opportunities for using library defined high-order

functions, such as map, flatMap, filter, exists, partition and others.

2.2.2 First-class functions

A programming language is said to have first-class functions if the functions have a status

as important as the other predefined types, such as integer or real numbers. First-class functions

are a requirement for functional languages.

Concretely, in a functional language the functions can: (1) be passed as an argument for

other functions; (2) be returned by other functions; (3) be used as constituent elements of data

structures; (4) have specific literals for representing anonymous functions. Points (1) and (2)

5

show that without first-class functions we could not have high-order functions, for these pass

the others as arguments and results.

Permitting to treat functions as normal data has positive consequences at the level of

program sophistication and the ideas that can be expressed in a natural way. In this first simple

example, we have a function that implements function composition – a new function is

generated using two existent functions.

let compose f g = fun x -> f (g x)

compose : ('a -> 'b) -> ('c -> 'a) -> ('c -> 'b)

 In this second example, we show a classic representation of sets using only functions. It

is known that a set is an identity whose main characteristic is the possibility of knowing if a

value belongs to it or not. Thus, we can represent each set with a Boolean function: that

function, when applied to a value produces true I the value belongs to the set and false if it does

not. It is known as the feature function of the set:

Empty set:

let set0 = fun x -> false

Universal set:

let setu = fun x -> true

Singular set constructor. Notice that we are representing an infinite set without any

problems:

let set1 x = fun y -> y = x

Belongs to test:

let belongs v s = s v

Set union:

let union s1 s2 = fun x -> s1 x || s2 x

2.2.3 Referential transparency

Pure functional programs are referentially transparent, meaning that everything which

happens during the execution of a program literally depends on the text of the program, and

there is no hidden entity (e.g. the imperative state) to influence the execution of the programs.

Referential transparency is a property that allows replacing, in the text of the program, an

expression for any other expression that evaluates to the same result, without changing the

behavior of the program. Referential transparency is an important principle in mathematics, very

much implicitly used in demonstrations.

Without referential transparency, it is very hard to be sure that an expression can be

replaced by another. To give an example, in general the following two expressions cannot be

considered as equivalent:

 f() + f() 2 * f()

6

With referential transparency, a function does not produce side-effects and returns always

the same result for the same inputs. This property also helps immensely if we need to parallelize

our programs.

2.2.4 Recursion

In the functional world, repetition is expressed using recursion [12], as opposed to the

imperative world where repetition is expressed with iteration.

In functional languages, programmers who pay special attention to code clarity and

legibility, use recursion as base for a programming technic which involves reducing each

problem to a simpler version of the same problem. It is thus an inductive technic and the

resulting functions are inductive. Here is a known example of an inductive function:

let rec fact n = if n = 0 then 1 else n * fact (n-1)

In any case, functional languages can also use recursion to simulate iteration. Simulated

iteration forces the reader of the code to think in a way that is considered less human-like and

more machine-like, but which allows for better efficiency, if it is strictly necessary. The gain in

efficiency results from the fact that the generality of functional languages being able to optimize

the simulated iteration without consuming execution stack (tail recursion optimization).

Example:

let rec factX n r =

 if n = 0 then r else factX (n-1) (r*n)

let fact n = factX n 1

2.2.5 Declarativity

The philosophy behind declarative programming is to provide an abstraction with which

programmers could write and/or read code and understand it’s goal without the need to “run the

algorithm in their heads”, but rather to express the essence of what that code is trying to

achieve, almost as if the programmers were “telling the program what they want it to do,

without step-by-step instructions”.

The first version of the fact function from the previous is declarative. The function

expresses a truth – fact n = n * fact (n-1) – that the machine uses to produce the

correct results.

The second version of the function is not declarative because it describes with minuteness,

step-by-step, a process of calculating the result. Caution, it is possible to mathematically prove

that both versions of the function are equivalent and from the mathematical viewpoint it may

not be of much relevance distinguishing the two forms. However, for a human, the declarative

form is relevant: functions become simpler to invent, to understand, and it becomes simpler to

intuitively argument over the correctness of functions.

There is a diverse category of languages that support declarative languages (e.g. logical

languages, restriction languages, HTML), with the functional languages category also included

7

in this group. This aspect is widely considered to provide with clear, simple to read code that we

think makes functional programming the paradigm of choice for the implementation of our

project.

2.2.6 Static typing

There are functional languages with dynamic typing (List, Scheme, Lua) and there are

functional languages with static typing (OCaml, Scala, Haskell). In the case of languages with

static typing, the generality supports type inference, with each declaring the argument’s type

being optional.

2.2.7 Evaluation strategy

 Functional languages can be divided into those who use strict evaluation and those who use

non-strict evaluation. The difference is that with strict evaluation each function call, the

arguments are always evaluated before the call is executed. With non-strict evaluation however,

the arguments are always passed unevaluated, and are evaluated inside the function only when

their values are needed.

Haskell is an example of a functional language that uses non-strict evaluation. OCaml uses

strict evaluation, albeit there are available non-strict mechanism in the data type Stream and the

lazy module.

2.2.8 Algebraic data types and pattern-matching

Most functional languages, such as OCaml, support the definition of algebraic data types,

which are typing made from diverse variants. For example, the next type, which defines lists of

values, possesses two variants: Nil for empty lists and Cons for non-empty lists.

type 'a list = Nil | Cons of 'a * 'a list

It is normal the existence of operations that only apply to values of certain variants. For

example, for lists, the operation for obtaining the tail only applies to non-empty lists.

The mechanism of pattern-matching allows for dealing with the various variants of an ADT

in a practical, elegant and type-safe matter. The mechanism is quite sophisticated: To start with,

it introduces a notion of pattern – a pattern is a special expression with intuitive syntax that

represents a set of values. When we verify pairing between a value and a pattern, some of the

value’s components become immediately available through the pattern’s variables. The human

being is accustomed in using patterns in its interaction with the real world. The patterns of

functional languages help in turning programs more legible and easier to write.

In the case of OCaml, pattern pairing is implemented in the construction of “match”. Here is

a small example, where only two patterns are used (occurring to the left of the arrow). The

function tests if the letter ‘a’ occurs in a list of characters.

let containsA list =

 match list with

8

 Nil -> false

 | Cons(x,xs) -> x = 'a' || containsA xs

2.2.9 Imperative mechanisms

It may seem strange, but the generality of functional languages is not pure, which means

that they include imperative mechanisms, including state. In the world of functional

programming, programs are mostly written in a functional manner, but imperative mechanisms

are used in specific, well justified situations.

 For example, if the problem involves state, it is best to deal with it using interactive

mechanisms, as opposed to trying to simulate them with functional mechanisms. Think of a

calculator with registers: it is best to represent the registers using a set of mutable cells. If a

language provides appropriate linguistic mechanism to deal directly with the situation, then it is

best to use those mechanisms.

 Another situation: there are certain operations that are inefficient in their functional way

and it may be worthwhile to think of imperative alternatives. For example, adding a value to the

end of a list, causes implicit duplication of that list. In the case of an absurdly grand list, it may

be advised to think twice.

2.3 Advantages

Compared to imperative programming, the functional paradigm displays certain properties

that give it some advantages [9].

Pure functional programming precludes the notion of state as such it only really receives an

input and produces an output. This can be of great help in a variety of aspects, including

legibility, parallelization and special technics such as currying.

Since a functional program doesn’t have mutable variables or state, and with the added

characteristics of higher-order function and declarativity, it is possible to write code that is

considerably more succinct and legible compared to other paradigms; because there are no

variables or side-effects one must keep track of while mentally thinking of the code’s execution,

this allows the programmer to better concentrate on what they want to compute instead of how

they will compute it, which will lead to safer, more bug-free code.

Another interesting advantage granted by the lack of states and side-effects, and the

irrelevance of the order in which a program executes its functions for the computing of its

output, is that it allows for easier program parallelization, since the possibility of a function

interfering with the output of another function running concurrently is inexistent.

Thanks to considering all functions as first-class (that is, they can be passed as arguments to

other functions, including themselves), functional programming allows for the use of certain

coding technics such as currying, a technique that allows programmers to work with functions

that take multiple arguments, and use them in settings where functions might only take one

9

argument. This allows not only for better code legibility, but in some cases, code that is more

efficient.

Lazy evaluation and data immutability can in some specific cases increase efficiency by

allowing the compiler to perform less strict evaluations on its expressions.

Higher order functions capture generical code patterns (e.g. map, filter, etc.), which help

program in a concise way, without constant repetition of the same formulas.

2.4 Disadvantages

Although many benefits are to be gained from using the functional paradigm, it isn’t

without its flaws [9].

The real world is imperative, and the notion of state is useful to better express various real-

world problems in code, such as a calculator with memory registers or accessing an external

database. While most functional languages (even pure ones) allow for methods to simulate

states, these can often-times break legibility and conciseness of the code, thus losing the

benefits of not using states.

Another problem is the typically less efficient use of CPU and memory management, in

large part due to the lack of mutable data structures whose implementations translates better into

various hardware. Not only that, but the lack of state forces us to continually declare and create

objects instead of assigning new values to already existing ones, which also leads to the need for

more memory in our programs.

In languages such as Haskell that use lazy evaluation, there can be the occurrence of

memory leaks. There are some special techniques to deal with them.

2.5 Examples of functional programming

We now show two small examples that illustrate the practical use of some features of these

languages. These examples include the use of algebraic data types, pattern-matching and

recursion.

This section also prepares to the next chapter where we will discuss the recognition of a word

by a non-deterministic finite authenticity and this requires the use of the breath-first strategy.

2.5.1 Binary search tree example using depth-first

In OCaml, we can define a binary tree [10] using the following ADT:

Type α tree = Nil | Node of α * α tree * α tree

 In the example below, belongs1 is a function that receives a value “val” and a binary tree

“tree”, and checks if there is a node in the “tree” whose value equals val. This function was

written using intuition and aiming for simplicity. Not surprisingly, in the end we verify that the

function implements a depth-first algorithm [11].

10

let rec belongs1 val tree =

 match tree with

 Nil -> false

 | Node(x,left,right) -> val = x

 || find val left || find val right

Notice how the function is declarative. What this code affirms is the following: (1) the value

cannot occur in an empty tree; (2) for the value to occur in a non-empty tree, either it occurs at

the root, or at the left sub-tree, or at the right sub-tree. If we wish to analyze the operational

effects of this function’s execution, we see that first we test if the value occurs at the root; if not

then we search for the value in all of the left sub-tree; only if the value was not found until this

point do search in the right tree. Thus, we show how the function is depth-first.

2.5.2 Binary search tree example using breadth-first

The following example resolves the same problem as “belongs1” but now using a breadth-

first strategy. In breadth-first, the search works on the nodes of the tree at each horizontal level

at a time, starting on the root, only moving to the next level if the value is not found in the

previous level. The presented solution has a certain degree of artificiality because it is necessary

for a way of representing the notion of horizontal level. To represent each horizontal level, we

use a list of trees, and even in the first call we need to pass the original tree inside a list.

let rec belongs2 val Level =

 match level with

 [] -> false

 | Nil::ls -> find val ls

 | Node(x,l,r)::ls ->

 x = val || find val (ls@[l,r])

It is pertinent to consider three cases relative to the first argument: (1) if the list is empty,

certainly the value does not occur; (2) if the NIL tree is at the head of the list, that tree can be

ignored for not having any element; (3) if a non-empty tree is at the head of the list, if the value

occurs at the root of that first tree the value is considered found, if it does not occur then it is

necessary to check if it occurs in the rest of the list with the two sub-trees added at the end.

Since in the third case the node’s successors are added to the end of the list instead of the

start, the function evaluates the tree in breadth-first.

11

3. Formal language and automata theory

For this project, we will be adhering to the formalisms and naming conventions adopted in

the theory of computation class of the computer science engineering course in the Faculty of

Sciences and Technology, NOVA University of Lisbon. This is important because it will allow

us to maintain coherence between what the students learn during the class and what they might

learn or revise using our toolkit, minimizing the student’s efforts in adapting their knowledge

from the classes to their usage of our toolkit in an attempt to advance their understanding of

formal language and automata theory.

Theory of computation is a branch of computer science and mathematics that studies the

properties of computation. Among other aspects, it also studies which problems can be solved

by a computer and among these which can be programmed efficiently.

In his book “Introduction to the theory of computation”, Michael Sipser [1] divides the

subject into three main branches: automata and languages, computability theory and complexity

theory. Due to the objectives of our project, we only wish to elaborate on the automata and

languages branch.

3.1 Chomsky Hierarchy

Before diving into explaining the main FLAT concepts we will discuss for our project, we

think it is of interest to present the following concept, the Chomsky hierarchy [1].

In FLAT, a formal grammar is a set of rules for producing strings in a formal language.

According to Chomsky, we can divide these grammars into four groups based on the type of

languages they can generate. Note that the levels with the lowest number identifier represent the

languages that require more capable recognition mechanisms and have more general generation

rules.

The hierarchy is as follows: Type 0 grammars generate recursively enumerable languages,

that is, languages whose words can be generated by a computationally universal machine; Type

1 grammars generate context-sensitive languages; Type 2 generates context-free languages;

Type 3 generates regular languages. Every regular language is context-free, every context-free

language is context-sensitive, every context-sensitive language is recursively enumerable.

Not all context-free languages are regular, and the same logic could be expressed to the rest

of the discussed languages.

The following section will describe the key FLAT concepts we pretend to cover with our

project, as well as establish the terminology used throughout the framework.

12

3.2 FLAT concepts covered in the project

3.2.1 Regular expressions

Regular expressions are special expressions which represent languages whose words have a

simple structure. By starting with a finite number of words and then applying regular operations

such as union, catenation and iteration closure, we can define regular expressions. They can be

seen as language generators but are less expressive than context-free grammars.

An example of a regular expression could be a(a + b)*, which denotes the language of

all the words over the alphabet {a, b} starting with an “a”.

In the real world, regular expressions are used in search engines, lexical analysis, word

processors, text editors and others; many programming languages even provide regular

expression capabilities.

3.2.2 Finite automata

Finite Automata is a simple mathematical model of computation that can be used to specify

languages. The expressive power of the model is relatively weak and is only capable of

describing languages with very regular structure. Nevertheless, it is a useful model with many

theoretical and practical applications.

In this model, the specification of each language is accomplished via recognition. Each

particular Finite Automaton (FA) recognizes some language in the sense that the FA checks

whether a word belongs or do not belongs to the language.

Finite automata are formally defined by the following 6-tuplet: a finite set of states; a finite

set of symbols (an alphabet); a list of transitions where each transition describes the progression

between two states by consuming a symbol; one initial state; and zero or more accepted states

(states that symbolize the success of a computation).

Finite automata are regular language recognizers, as they are able to recognize all languages

that can be obtained from a regular expression and are less capable than pushdown automata.

For example, the automaton in Figure3.1 recognizes the previously discussed language denoted

by all words over {a, b} starting with an a.

13

Figure 3.1-Deterministic Finite Automata

These automata can be either deterministic or nondeterministic, where determinism in this

context means that for each state a symbol can only transition to one state, whereas in

nondeterminism, transitions can happen from a state to one or more states using the same

symbol, and some states can also transition to another state without consuming any symbol. In

this project we will be working with both deterministic and nondeterministic finite automata.

As contrast to the previous example which was deterministic, here is an example of a non-

deterministic finite automaton:

Figure 3.2- Non-Deterministic Finite Automata

Notice how the automata can transition from state 2 to 3 without consuming any symbol,

thus making it non-deterministic.

Finite automata are widely used in software engineering, compilers, network protocols, as

well as in other areas not strictly to due with computer science, such as philosophy, biology and

linguistics.

3.2.3 Context-free grammars

Context-free grammars are a type of formal grammars used to describe all possible strings

in a specified formal language, more precisely, they are context-free language generators, and

are represented as the following 4-tuplet: a non-empty finite set of nonterminal characters, each

14

representing a part of a sentence; a set of terminals different from the first set, that defines the

alphabet of the language; a set of rules composed of a character and a string of characters and

terminals; and the start symbol, an element of the first set that represents the entire sentence.

Here is an example of a context-free grammar that generates the language of all words over

the alphabet {a, b} that have an equal number of both letters a and b, and where all occurrences

of “a” are at the left of all occurrences of “b”:

P -> ε | aPb

Notice how P calls itself, indeed recursion plays an important role in defining context-free

grammar.

Context-free grammars are mainly used for describing structures for programming

languages and are also used in linguistics to describe the structure of sentences and words in

natural languages.

Context-free grammars correspond to a more powerful mechanism of generating languages

than that of regular expressions. There is no regular expression equivalent to the previous

grammar.

3.2.4 Pushdown automata

A pushdown automaton is a type of automata that uses a stack, can be both deterministic or

non-deterministic, and are expressed through the following 7-tuplet: a finite set of states; a finite

set for the input alphabet; a finite set for the stack alphabet; a finite set representing the

transition relation; a starting state; the initial stack symbol; and a set of accepted states.

Compared to finite automata, they can handle theoretically infinite amounts of data. A word is

accepted by a push-down automaton only if it leads to both a state of acceptance and the stack

being empty.

They are language recognizers. It is interesting to note that non-deterministic pushdown

automata are more powerful than the deterministic ones. This means that there are some

context-free languages that are only recognized by a non-deterministic automaton. In general

pushdown automata are more powerful than finite automaton but less powerful than Turing

machines.

Here is the example of a push-down automaton for the language previously given as

example in the context-free grammar section.

15

Figure 3.3-Pushdown Automata

Notice that for every “a” consumed we add it to the stack, while for every “b” we remove an

“a” from the stack, thus the word needs to have the same number of occurrences of a and b to be

accepted.

Their main practical applications involve parser designing, but are also used in other areas

such as online transaction systems.

3.2.5 Turing machines

A Turing machine is a computation model that consists of a single read and write control

unit and an infinite tape where the unit can write or read symbols. The tape is initialized only

with the initial input and the rest is blank. In the lectures, the Turing machine presented is stack-

based, which is represented by the following 6-tuplet: a finite, non-empty set of control states;

an input alphabet which keeps track of process data; a starting state; the initial memory; a

transition relation that specifies the rules followed by the computation; and a list of final states.

Due to its relative complexity compared to the other four concepts, we decided to omit an

example for a Turing machine.

A Turing machine is a formal language recognizer, that is, it recognizes languages

generated by any grammar, including unrestricted grammars. They are used in a variety of

computer science fields, including algorithmic complexity theory, machine learning, software

engineering, computer networks and evolutionary computations.

3.3 Implementing FLAT concepts in the functional paradigm

During the implementation of our project, there will be various properties we wish for our

end product to possess. The most important aspect of our code will be for it to, whenever

possible, be as legible, intuitive and faithful to the formalisms adopted by the computation

theory class, even if it means sacrificing some efficiency.

 For some problems the most natural translation of its solution into functional code will

produce the desired outcomes and be very easy to understand. But there are other problems

where the natural solution enters an infinite cycle, and so we need to write less institutive code

using special techniques.

16

To better demonstrate this point, as well as give a general impression of the challenges that

will be faced during this project, we will showcase two examples involving finite automata. The

first problem has a solution that is simple and intuitive and will follow the lectures closely; for

the second problem the intuitive solution enters an infinite loop, forcing us to resort to less

intuitive techniques.

To start we need to introduce an OCaml representation for finite automata. A finite

automaton is characterized by an initial state (represented by a simple name), a set of transitions

between states, labelled by symbols, and a set of acceptance states. We also need a

representation for words, and we will use a simple character list. The following code represents

the definition of an automata.

type symbol = char

type word = symbol list

type state = string

type states = state list

type transition =

 state

 * symbol

 * state

type transitions = transition list

type fAutomaton = {

 initialState: state;

 transitions: transitions;

 acceptStates: states }

3.3.1 Reachable example

An example of a typical FLAT problem that translates nicely into functional code that is

intuitively understood is the reachable problem, where given an initial state and the list of

transitions for an automaton, we want to obtain all states reachable from the initial state

(including the initial state itself).

Before we write our main function however, we need to define the auxiliary functions

gcut.

Without bothering too much about the implementation details of said function, the function

gcut receives as arguments a specified state and list of transitions for an automaton, and

returns the pair formed by the list of transitions starting from that state, and the list of all

remaining transitions (those that do not start from that state.

Here is the OCaml code for the reachable function as stated before, which receives as

arguments a state s and the list of transitions t for an automaton, and computes the list of states

reached by the state s through transitions in t:

let rec reachable s t =

 let (a,b) = gcut s t in

 s::flatMap (fun (_,_,n) -> reachable n b) a

17

The reachable function declares the following: The reachable states are s and all the states

reachable from all neighbor of s.

3.3.2 Accept example

To give an example of a typical FLAT problem that requires a non-intuitive solution, we

will discuss the problem of testing the acceptance of a word in a finite automaton. To resolve

the problem in its maximum generality we will consider that the automata can be non-

deterministic. Notice that in this situation it will be necessary to use a breadth-first exploration

strategy, for only then can we guarantee the detection of the acceptance situation; thankfully we

already saw the usage of depth-first and breadth-first strategies in the previous chapter, so

hopefully the reader will have a better base understanding of these strategies, which will be

important for grasping the full scope of our example.

Before jumping to the main problem, we will need a function that, given a state, a symbol

and a set of transitions, will give us all the states for which we can transition to. Here is the code

of said function.

let nextStates sy st t =

 let n = List.filter

 (fun (a,b,c) -> st = a && sy = b) t in

 List.map (fun (_,_,d) -> d) n

3.3.2.1 Deterministic Finite Automata accept example using depth-first

In the first solution we will attempt to use the definitions of the documentation as

straightforward as possible, and we reach the following function:

let rec accept1 w st t sta =

 match w with

 [] -> List.mem st sta

 | x::xs -> let n = nextStates x st t in

 List.exists (fun c -> acc xs c t sta) n

The function receives as arguments a word, a current state, a list of the automata’s

transitions and the list of its accepted states. The first call passes the full word, the initial state,

the transitions and the accepted states. Notice that it has a similar structure to the belongs1

function previously presented in chapter 2.

The function analyses a word which we pretend to verify. In the case of the empty word, it

is accepted by the automata only if the current state is of acceptance. If the word displays the

form x::xs, it is necessary to consider every state to where we can transition with the symbol x

and check if from any of those states the sub-word xs can be accepted. This is a typical

inductive form of reasoning. The high-order function List.exist deals with a variable

number of recursive calls and tests if any of those calls guarantee acceptance.

18

This implementation is depth-first because each call inside List.exists is evaluated

until de end. This function makes sense only for DFAs because otherwise the analysis could

become trapped in an unproductive path.

Note that to simplify we assumed that the automata does not contain any empty transitions.

3.3.2.2 Non-deterministic Finite Automata accept example using breadth-first

The previous solution easily enters in infinite loops because the automaton can contain

loops. It is necessary to devise a sophisticated and less intuitive solution using breadth-first.

The function receives the list of transitions and accepted states, but its first argument is a list

of pairs (state, word), as explained below. The initial call passes the pair (initial state, word),

and both transitions and accepted states lists.

let accept2 cf t sta =

 match cf with

 [] -> false

 | (st, [])::ls -> List.mem st sta || acc ls t sta

 | (st,x::xs)::ls -> let n = nextStates x st t in

 let cfn = List.map (fun c -> (c,xs)) n in

 acc (ls@cfn) t sta

The function has three branches, just as the function belongs2. The hardest part to

explain is the fact that the arguments w and st of the function accept1 now appear in the form

of a list of configurations which are ordered pairs containing a state and a word. In reality, the

function uses a breadth-first strategy to go through an implicit search tree which may be infinite.

Each ramification of that implicit tree is determined by the state from which we want to perform

recognition and the word we want to recognize.

Thus, if the list of configurations is empty, then we can decide that the word is not accepted.

If the list is not empty and the first configuration of the list has an empty word, then that word is

only accepted if the state of the same configuration is of acceptance; otherwise it is necessary to

analyse the remaining configurations. If the list is not empty and the first configuration of the

list has a non-empty word x::xs, it is necessary to consider all the states to where we can

transition using the symbol x and create new configurations with the sub-word xs to be analysed

in the future.

This is breadth-first because when consuming the symbol x, we add new configurations to

the end of the list (as expressed by ls@cfn), thus assuring that we first analyse the

configurations that are waiting longer.

If the word belongs to the language accepted by the automata, then the function will

eventually terminate and produce the result true. If the word does not belong to the language

recognized by the automata, then the function can terminate with the result false, or it may never

terminate, originating uncertainty over the real result. We are present before a semi-decidable

19

algorithm. If we want to deal the problem of non-termination, we have to limit in some way the

depth of the search over the implicit tree where the function accept2 traverses.

20

21

4. Pedagogical Tools

The study of Formal Language and automata theory presents the computer science student

with the opportunity to better understand the context and fundamentals behind some problems

they might face during their future professional careers, which in turn will allow them to better

think of the possible solutions and make the better decisions, thus contributing to improved

productivity and work quality.

While the subject proves to be indispensable for any computer science curriculum, its

sometimes abstract and mathematical nature presents an added challenge for the student to fully

grasp its essence. As such, many teachers have found that the use of both visual and non-visual

auxiliary learning tools, which provide a more concrete foundation on the topic, appear to

improve the student’s understanding of the taught concepts, thus facilitating both the teaching

and learning of this subject.

Since the early 1960s, many learning tools have been developed, most of them would

distinguish themselves from the competition by focusing on a certain niche or characteristic that

the other tools didn’t support; eventually, during the years some have become more popular

than others.

According to “Fifty Years of Automata Simulation: A Review” [2], these tools could be

divided into two main groups: one represents the text-based tools that use a collection of

symbols to form a language, which we then use to write the definition of an automata, which is

then processed using either compilers or interpreters; the second represents the tools that accept

an automata specification (either in a structured or diagrammatic form) and then simulates its

behavior in a graphical environment, often with the added implementation of animations.

The following section will aim at describing the state of the current landscape pertaining to

these tools.

4.1 Classification and characteristics

Some like “Online Turing Machine Simulator” [13], an online Turing machine simulator,

allow the user to define a Turing machine using the tool’s syntax, and then write and input for

the program to validate. The user can also select from a collection of pre-defined examples,

view tutorials and even define the speed at which the simulation runs.

Others, such as “Abstract Machine Simulator” provide a module for generating words

accepted by the automata being texted.

22

Some also allow the user to draw their own automata for all testing purposes, using drag

and drop styled interfaces, one criticism these sometimes face is how disorganized and

confusing writing bigger, more complex automata can become with these tools.

There are also various tools that allow for the conversion of nondeterministic automata into

deterministic automaton, and then into a Turing machine.

Here is a list of most of these tools one might find while exploring the subject.

In 1963, Coffin et all published a paper entitled “Simulation of Turing machine on a digital

computer” [14], which was perhaps the first ever automata simulator study, in it the authors

describe the tool being text-based and adopting the classical Turing machine representation of

quintuplet for each transition.

In 1972, on what would probably be the first graphic-based tool, Gilbert and Cohen

published the paper “A simple hardware model of a Turing machine: its educational use” [15]

where they describe a Turing machine simulator and its utility for teaching programming

fundamentals.

Most tools until 1992 would then only support either Turing machines or Finite and

pushdown automata, such as “Turing Machine Simulator” [16], “Tutor – A Turing Machine

Simulator” [17] and “Turing’s World” [18]; only in 1992 with “Hypercard Automata

Simulation” [19] by Hannai et al did a tool support all 3 types, and in 1993, the c++ “Formal

Language and Automata Package” [20] (the precursor to JFLAP) not only supported the 3 types

mention, but also non-determinism.

In 1997, Head et al developed “A Simple Simulator for State Transitions” [21], which had

support for a finite state machine simulator, a nondeterministic pushdown automaton simulator

and a Turing machine simulator, all based on notational languages with rigid formats.

New tools have been developed since, other similar to the ones discussed so far include

“Language Emulator” [22] by Vieira et al, “Automata en Java” [23] by Dominguez, “Turing

Building Blocks” [24] by Luce and Rodger, a Java computability toolkit by Robinson et al [25],

“PetC” by Bergström [26], “Thoth” by García-Osorio

4.2. Noteworthy tools

The following tools deserve a more profound introduction due to either their popularity,

concept or availability.

4.2.1. Automata Tutor v2.0

Automata Tutor [29] is a web-browser application for users to test their knowledge on DFA,

NFA, NFA to DFA conversion and regular expression constructions by providing exercises in

which the user must use a drag and drop styled graphics tool to create the requested automata, or

imput the correct regular expression in a more text-based window. Once submitted the answer,

23

the site will calculate a score from 0 to 10 based on how closed the input is to the desired

solution and provide feedback on how to improve the answer.

In the paper “Automated Grading of DFA Constructions ∗”, Rajeev Alur et al explain that

the grading of the exercises is done through the conversion of DFAs into a MOSEL formula and

vice-versa, which allows for a method of evaluating the answer; the actual grading is achieved

with an algorithm that divides all errors into 3 common types, them being an attempt to provide

a solution to a different problem, the lack of a transition or final state, and an error on a small

part of the answer string.

In the paper, the authors also concluded after testing for comparison between the gradings

of the site and those of actual instructors, that the tool was able to provide a quality of grading

equivalent to that of human graders.

4.2.2. Racso

Racso [30] is a web-browser application created in 2012 by Carles Creus and Guillem

Godoy of Polytechnic University of Catalonia, with the objective of providing their students

with exercises on FLAT, specifically context-free grammars, it is entirely text-based. According

to their paper “Automatic Evaluation of Context-Free Grammars (System Description)”, the

tool consists of multiple exercises on FLAT concepts such as deterministic finite automata,

context-free grammars, push-down automata, reductions between undecidable problems and

reductions between NP-complete problems. The idea is that for every exercise describing a

specific language, the student as to solve it by providing a (sometimes unambiguous) grammar

that generates that language, the correctness of the answer is achieved by comparing the

student’s grammar with the professor’s known-to-be-correct grammar to see if they generate the

same language. Since equivalence of context-free-grammars is an undecidable problem, the

work-around is to define a length L and test if there is a word with length lesser or equal then L

that can be generated by only one of the two grammars, if such word exists, either both

grammars are not equivalent (thus the answer is wrong) or the value of L was too low. The

reason this works is due to the academic nature of the exercises, both grammars and L will

almost always be of sufficiently small size for the comparison to behave adequately. The

comparison itself is based on hashing, SAT and automata.

To use this tool as of this writing, the user must visit the site

(https://racso.cs.upc.edu/juezwsgi/index) where they may choose from a plethora of

representative exercises, divided into various classifications according to their specific topic,

most noticeably exercises on DFA, CFG, regular and context-free operations. After selecting the

exercise, a window with some instructions and a small text console will display and allow the

user to input their solution, once submitted the site will display whether the answer was correct

or not.

24

The site also allows the user to create an account which they can then use to gain access to a

collection of exams on the subject of the exercises.

4.2.3. JFLAT

Perhaps the most popular and well-documented tool, JFLAP [31] is a Java implemented

toolkit that, according to Susan Rodger et al in “A Hands-on Approach to FLA with JFLAP”

began in 1990 as a collection of c++ and x windows tools called NPDA, when professor Susan

Rodger of at the time Rensselaer Polytechnic Institute began teaching a FLAT course and found

that students requested further counselling and feedback on their understanding of the subject.

By 1993 the program already had support for simulating non-deterministic push-down

automata, deterministic push-down automata and Turing machines with building blocks. In

1996 the tool switched to Java and in 2001 to Swing, suffering a complete rewrite and even saw

a change in some of the algorithms. During the initial years, various FLAT concepts and tools

have been implemented, such as L-systems in 1993, pumping lemma in 1996, a brute-force

parser, LL parser and SLR parser between 1996 and 1997, and regular expressions in 1999.

Some of the more recent additions include Moore and Mealy machines, Batch grading, regular

pumping lemma proof, context-free lemma proof and various preference settings such as

defining the empty string (epsilon or lambda).

To use the tool as of this writing, a user must go to the JFLAT official website

(http://www.jflap.org) and fill in a form on why they are interested on the program, as well as

country and faculty where they come from. Afterwards, they will be allowed to download an

executable jar file which comprises of the JFLAT toolkit. The site also features a plethora of

tutorials and even video instructions on how to use most of JFLAP’s functionalities, and how

instructors can use them to better explain the subject.

The main features of JFLAT allows the user to create various types of automata and regular

languages; convert NFA into regular grammar or expressions; create context-free languages

such as push-down automata or context-free grammar, as well as to exert transformations on

them; define Turing machines (either multi-tape or building blocks based) and create/render L-

systems. The tool provides a drag and drop interface which allows the user to define a finite

automata, then by entering a test word (various words can also be tested in simultaneous), the

program can either compute whether the string is accepted, generate a diagram showing the

behavior of the automata for a word up to a specific symbol, or analyze the consumption of its

symbols one by one. One interesting functionality is the ability to show in parallel the possible

transitions and state of non-deterministic automata for an input word. The tool also supports the

ability to analyze certain properties and identify them for the student to better grasp them, like

highlighting lambda-transitions or non-deterministic states. For pumping lemma, the tool

implements an interface where you “play a game” against the computer, where each side will

25

decide on an input until the end of the proof is reached, the interface allows the user to click a

button that displays an explanation of the problem’s context.

The popularity of JFLAP is widely considered unparalleled compared to other FLAT tools;

according to the JFLAP website, from 2004 to 2008 the tool had seen over 64.000 downloads in

161 different countries, and as of this date the site lists over 10 books that mention the usage of

JFLAP, and over 30 published papers that reported having used, or even modifying JFLAP. One

could argue that these numbers alone would suffice as testament to the importance of the tool’s

role in helping teach FLAT, but in "Increasing Engagement in Automata Theory with JFLAP,"

Susan Rodgers et al conducted a 2 year study to see the responses of students from over 10

faculties when using JFLAP for their FLAT courses, and the results showed that more than half

the enquired students admitted that the usage of the tool had either made learning the subject

easier or more engaging.

4.2.4. PFLAT

PFLAT [32] is a text-based SWI-Prolog implemented tool from 2005, which focuses on

providing a library of Prolog predicates that map the concepts of formal language and automata

theory as closely as possible to their respective mathematical and formal definition. The tool

provides the source code as to better help students grasp the intricacies of the subject. The tool

allows for the instructors to adapt its definitions and naming’s to those they prefer and provides

both student and teacher with the ability to extend the library with their own implementations of

further concepts from the subject. To facilitate its usage, PFLAT also allows for various

operators on words, regular languages and automata, such as concatenation, union, closure, and

which ever possible operator its user might want to implement.

In “A Prolog Toolkit for Formal Languages and Automata“, the authors describe some of

the functionalities and concepts and how they are implemented in PFLAT, and provide as

example the definition of all binary words with an even number of 1’s. In PFLAT, an alphabet

can be defined and checked against the computation of the set of symbols of a random set

expression; a user can check for declaration errors and even have them shown on screen as error

messages; words can be represented, with operations for concatenation and N-th power already

available; predicates on words for checking if they belong to a specific alphabet, to generate all

words over an alphabet, or to compare to another word and conclude if they respect a certain

lexical order, for dealing with prefix, suffix and sub-word, and with the possibility to

change/add predicates; operands for languages including literal sets of words, names of

alphabets and language definitions, as well as operators for set, Kleene star, positive closure,

product and power; defining regular language with regular expressions or finite automata;

expressions can be build over finite automata, with the latter having support for the union,

26

complement, intersection, closure, minimization and determinization operators; and few more

features.

As of its debut, the tool only had support for regular languages and pushdown-automata.

Later versions of the system have received support for all the other classic mechanisms.

4.3. Conclusion

It is interesting to note that, even though FLAT as been stabilized for some years, the advent

of these learning tools has introduced new interesting challenges for the field of computation

theory.

An observation one could draw from the analysis of the history of FLAT tools, is that most

of them were, in the early years, mostly textual, and as time passed, more graphics-based tools

were being made; a possible reason for this shift could be attributed simply to the evolution of

more powerful, easy to use frameworks and mechanisms that facilitated the appearance of such

tools.

While a great number of different tools already exist for helping teach formal language and

automata theory, it is the communities’ belief that the welcoming of further tools with different

interpretations and concepts will help complement already existing ones and provide both

student and teacher with often new functionalities to apply to their learning and teaching

respectively.

27

5. Work plan and solution

5.1 Solution

The objective is to develop, using the OCaml language, a pedagogical tool called OCaml-

Flat to support students in learning the concepts of formal languages and automata theory

(FLAT). The functionalities of the system will follow the documentation of the discipline of

computation theory, organized by Professor António Ravara. In this documentation, several

choices are made, especially regarding the selection of specific algorithms.

The tool will be developed into a library of types and functions developed in OCaml. There

are three intended uses for this library:

6 1-using the tool within the textual interface of the OCaml interpreter, students will have the

possibility to define, load, test and manipulate FLAT mechanisms. However, it is necessary

to realize that for a student to use this system, they will have to spend some time learning

the data representation and API of the tool.

7 2-the tool will be used in the context of the Mooshak automatic evaluation system. The

idea is to support the creation of FLAT exercises, ready to use by students. In this case,

each student only needs to know the format of the answer, without needing to know the

API of the tool. Examples of Exercises: (1) write a finite automata that recognizes the

language of binary numbers that are multiples of 3; (2) Minimize the given finite automata;

(3) Convert a given regular expression into a regular grammar; (4) Give four examples of

words that are recognized by a given stack automata.

8 3-On top of the tool will be developed a WEB application with interactive graphics. But

this point is part of a separate master’s dissertation, which runs in parallel with this one.

5.2. Validation

All examples of the Computation theory documentation, and probably a few more, will be

translated into the tool formats, which will allow for some confidence in the implementation

correction but also to critically assess the usability of the system. Note that the system will need

to implement some semi-decidable procedures and special tests will be created for these cases.

Also, regarding usability, the opinion of professors of disciplines related to FLAT will be

requested.

5.3. Work Plan

Objectives are better reached when divided into detailed sub-goals with concise yet flexible

deadlines. As such we have devised a work plan for how we aim to proceed during the

28

development of this Mc’s thesis. Figure5.1 shows an overview of the scheduling for this work

plan.

Figure 5.1- MSc’s thesis work plan

9 1-Review of some functional programming techniques in OCaml. Writing some functions

on finite automatons to gain some initial experience and to gain a more accurate notion

about future work. This part has already been carried out. (15Jun-15Jul).

10 2-develop the essential of the project, in this first phase limited to finite automata and

regular expressions. There are many non-trivial algorithms that need to be developed and

they should be expressed in a very clear manner and as close as possible to the TC

documentation. In order to be able to support all kinds of exercises for students, some

additional less orthodox functions should be added to the API, such as a function of

accepting words for regular expressions (although this is a mechanism) and a word

generation function for finite automata (despite being a recognizer mechanism). Some of

the algorithms involve non-determinism and non-terminations, which makes emerging

some challenging practical problems that will be interesting to deal with. (15Jul-31Oct).

11 3-Repeat what was described in the previous point, but now for push-down automata and

for context-independent grammars. Many of the situations to be dealt with will be repeated,

but now appear in more complex versions, more difficult to handle, thus demanding greater

mental effort due to the significant complexity of the mechanisms. (01Nov-31Dec).

12 4-Create a rich library of exercises to test the system, both directly in the OCaml

interpreter, as well as within Mooshak. In addition, if necessary, develop in partnership

with the colleague of the other project, a small number of other functions, which result

from the needs of the parallel project that involves a WEB application for FLAT. (1Jan-

31Jan).

13 5-Ideally, features for Turing machines will also be programmed. In the case of scarce

revealing time, this will be the omitted part. (1Feb-29Feb).

14 6-Writing of the master's thesis. (1Jan-25Mar).

15

29

Bibliography

 [1] Learning, C., Reserved, A. R., & Learning, C. (n.d.). Introduction to the theory of

computation_third edition - Michael Sipser.

 [2] Chakraborty, P., & Saxena, P. (2011). Fifty years of automata simulation: a review. ACM

Inroads, 2(4). Retrieved from http://dl.acm.org/citation.cfm?id=2038893

 [3] Chesñevar, Carlos & Cobo, Maria & Yurcik, William. (2003). Using theoretical computer

simulators for formal languages and automata theory. SIGCSE Bulletin. 35. 33-37. 10.1145/782941.

782975.

 [4] Ctp.di.fct.unl.pt. (2019). [online] Available at: http://ctp.di.fct.unl.pt/miei/lap/teoricas/02.html

[Accessed 15 Jul. 2019].

 [5] Rojas, R. (2015). A Tutorial Introduction to the Lambda Calculus Rául Rojas∗ FU Berlin, WS-

97/98 Abstract. Blackwell, 1–17. https://doi.org/10.1006/anbe.1999.1219

 [6] Rojas, R. (2015). A Tutorial Introduction to the Lambda Calculus Rául Rojas∗ FU Berlin, WS-

97/98 Abstract. Blackwell, 1–17. https://doi.org/10.1006/anbe.1999.1219

 [7] Ocaml.org. (2019). OCaml – OCaml. [online] Available at: http://ocaml.org/ [Accessed

15 Jul. 2019].

 [8] Vujosevic Janicic, Milena & Tošić, Dušan. (2008). The role of programming paradigms in the

first programming courses. The Teaching of Mathematics. 11.

 [9] John Hughes, the U. of G. (2004). Why Functional Programming Matters. “Research Topics in

Functional Programming,” 3(1), 53–67. https://doi.org/10.1163/1574-9347_bnp_e328980

 [10] Heineman, G., Pollice, G., & Selkow, S. (2016). Algorithms in a Nutshell. In

International immunology. https://doi.org/10.1093/intimm/dxu021

 [11] Kozen, D. C. (1990). The design and analysis of algorithms. Statistics, I(December

1990), 346. https://doi.org/10.1007/978-1-4612-4400-4

 [12] Felleisen, M., Findler, R., Flatt, M. and Krishnamurthi, S. (n.d.). How to Design

Programs.

 [13] Turingmachinesimulator.com. (2019). Online Turing Machine Simulator. [online]

Available at: https://turingmachinesimulator.com/ [Accessed 15 Jul. 2019].

 [14] Coffin, R. W., Goheen, H. E., & Stahl, W. R. (2008). Simulation of a Turing machine

on a digital computer. 35. https://doi.org/10.1145/1463822.1463827

 [15] Gilbert, I. and Cohen, J. 1972. A simple hardware model of a Turing machine: its

educational use. Proceedings of the ACM Annual Conference, pp. 324-329.

 [16] Cernansky, M., Nehéz, M., Chudá, D. and Polický, I. 2008. On using of Turing machine

simulators in teaching of theoretical computer science. Journal of Applied Mathematics, 1(2): 301-312

 [17] Pierce, J. C., Singletary, W. E. and Vander Mey, J. E. 1973. Tutor – a Turing machine

simulator. Information Sciences, 5: 265-278.

 [18] Barwise, J. and Etchemendy, J. 1986. Turing’s World: An Introduction to

Computability, Academic Courseware Exchange

30

 [19] Hannay, D. G. 1992. Hypercard automata simulation: finite-state, pushdown and Turing

machines. ACM SIGCSE Bulletin, 24(2): 55-58

 [20] LoSacco, M. and Rodger, S. H. 1993. FLAP: a tool for drawing and simulating

automata. Proceeding of the World Conference on Educational Multimedia and Hypermedia, pp. 310-317

 [21] Head, E. F. S. 1997. ASSIST: A Simple SImulator for State Transition. http://www.

cs.binghamton.edu/~software/ASSIST.html.

 [22] Vieira, L. F. M., Vieira, M. A. M. and Vieira, N. J. 2004. Language emulator, a helpful

toolkit in the learning process of computer theory. inroads – ACM SIGCSE Bulletin, 36(1): 135-139.

 [23] Dominguez, A. E. O. 2009. Automata. http://torturo.com/wp-

content/uploads/Automata.jar.

 [24] Luce, E. and Rodger, S. H. 1993. A visual programming environment for Turing

machines. Proceedings of the IEEE Symposium on Visual Languages, pp. 231-236.

 [25] Robinson, M. B., Hamshar, J. A., Novillo, J. E. and Duchowski, A. T. 1999. A Java-

based tool for reasoning about models of computation through simulating finite automata and Turing

machines. inroads – ACM SIGCSE Bulletin, 31(1): 105-109.

 [26] Bergström, H. 1998. Applications, Minimisation, and Visualisation of Finite State

Machines. M.Sc. dissertation, Royal Institute of Technology, Stockholm University

 [27] García-Osorio, C., Mediavilla-Sáiz, I., Jimeno-Visitación, J. and García-Pedrajas, N.

2008. Teaching pushdown automata and Turing machines. inroads – ACM SIGCSE Bulletin, 40(3): 316.

 [28] Almeida, André & Almeida, Marco & Alves, José & Moreira, Nelma & Reis, Rogério.

(2012). FAdo and GUItar: Tools for Automata Manipulation and Visualization.

 [29] Automatatutor.com. (2019). App: Home. [online] Available at:

http://www.automatatutor.com/ [Accessed 15 Jul. 2019].

 [30] Racso.cs.upc.edu. (2019). RACSO. [online] Available at:

https://racso.cs.upc.edu/juezwsgi/index [Accessed 15 Jul. 2019].

 [31] Jflap.org. (2019). JFLAP. [online] Available at: http://www.jflap.org/ [Accessed 15 Jul.

2019].

 [32] Wermelinger, M., & Dias, A. M. (2006). A prolog toolkit for formal languages and

automata. ACM SIGCSE Bulletin, 37(3), 330. https://doi.org/10.1145/1151954.1067536.

