
Rita Pedroso Macedo

Bachelor in Computer Science and Engineering

OCaml-Flat on the Ocsigen framework

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: Artur Miguel Dias, Auxiliar Professor, NOVA
School of Science and Technology

Co-adviser: António Ravara, Associate Professor, NOVA
School of Science and Technology

Examination Committee

Chair: Doutor Jorge Cruz, FCT-NOVA
Rapporteur: Doutora Nelma Moreira, FCUP

Member: Doutor Artur Miguel Dias, FCT-NOVA

August, 2020

OCaml-Flat on the Ocsigen framework

Copyright © Rita Pedroso Macedo, NOVA School of Science and Technology, NOVA Uni-

versity Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based on the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Acknowledgements

First and foremost, I would like to express my gratitude to the Tezos Foundation which

grant supported the development of my project.

My utmost appreciation goes to my Advisers, Professors Artur Miguel Dias and An-

tónio Ravara, whose commitment and support throughout the development of this project

have been relentless and inspirational.

I would also like to thank my Colleagues at Room P3/14 for helping me all along the

way.

To all my Friends, who are always willing to share my burdens and joys, my deepest

thanks.

Last but not least, my heartfelt thanks to my Family for always supporting my choices

- even when I have decided to change from Arts to Computer Engineering - and for

believing in my path, come rain or shine.

v

Abstract

Formal Languages and Automata Theory are important and fundamental topics in Com-

puter Science. Due to their rigorous and formal characteristics, learning these becomes

demanding. An important support for the assimilation of concepts is the possibility of

interactively visualizing concrete examples of these computational models, thus facilitat-

ing their understanding. There are many tools available, but most are not complete or do

not fully support the interactive aspect.

This project aims at the development of an interactive web tool in Portuguese to help

understand, in an assisted and intuitive way, the concepts and algorithms in question,

watching them work step-by-step, through typical examples pre-loaded or built by the

user (an original aspect of our platform). The tool should therefore enable the creation

and edition of an automaton or a regular expression, as well as execute the relevant

classical algorithms such as word acceptance, model conversions, etc. Another important

feature is that the tool has a clean design, in which everything is well organized and it is

also extensible so that new features can be easily added later.

This tool uses the Ocsigen Framework because it provides the development of complete

and interactive web tools written in OCaml, a functional language with a strong type

checking system and therefore perfectly suitable for a web page without errors. Ocsigen
was also chosen because it allows the creation of dynamic pages with a singular client-

server system.

This document introduces the development of the tool, its design aspects that enable

showing different conversions and processes as well as the development of the several

functionalities related to the mechanisms already presented.

Keywords: Formal Languages, Automata, OCaml, Ocsigen, Teaching applications, Inter-

active Web Pages.

vii

Resumo

Linguagens Formais e Teoria de Autómatos são bases importantes na formação em Enge-

nharia Informática. O seu carácter rigoroso e formal torna exigente a sua aprendizagem.

Um apoio importante à assimilação dos conceitos é a possibilidade de se visualizarem

interactivamente exemplos concretos destes modelos computacionais, facilitando a com-

preensão dos mesmos. Há um grande número de ferramentas disponíveis, mas a maioria

não está completa ou não oferece suporte total ao aspecto interativo.

Este projeto visa o desenvolvimento de uma ferramenta web interativa, em português,

para ajudar de forma intuitiva e assistida a entender os conceitos e algoritmos em questão,

observando-os passo a passo, através de exemplos típicos pré-carregados ou construídos

pelo utilizador (um aspecto original desta plataforma). A ferramenta deve, portanto,

permitir a criação e edição de autómatos e expressões regulares, bem como executar os

algoritmos clássicos relevantes, como aceitação de palavras, conversões de modelos etc.

Outro foco importante é o design limpo da ferramenta, bem organizada e extensível para

que novos mecanismos possam ser facilmente adicionados.

Esta ferramenta usa o Framework Ocsigen, pois este proporciona o desenvolvimento de

ferramentas web completas e interactivas, escritas em OCaml, uma linguagem funcional

com um forte sistema de verificação de tipos e, por isso, perfeita para se obter uma pá-

gina web sem erros. O Ocsigen foi, ainda, escolhido porque permite a criação de páginas

dinâmicas com sistema de cliente-servidor único.

Este documento apresenta o desenvolvimento da ferramenta, os aspectos de design

que permitem mostrar diferentes conversões e processos, assim como as diversas funcio-

nalidades relacionadas com os mecanismos já apresentados.

Palavras-chave: Linguagens Formais, Autómatos, OCaml, Ocsigen, Aplicações para en-

sino, Páginas Web Interactivas.

ix

Contents

List of Figures xv

List of Tables xvii

Listings xix

Acronyms xxi

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Objectives . 2

1.3 Contributions . 2

1.4 Document Organization . 3

2 Related Work 5

2.1 FLAT Libraries . 6

2.1.1 Awali . 6

2.1.2 FAdo . 7

2.2 FLAT Visualization tools . 8

2.2.1 JFlap . 8

2.2.2 Automaton Simulator . 9

2.2.3 FSM simulator, Regular Expressions Gym, FSM2Regex 10

2.2.4 Automata Tutor v2.0 . 12

2.2.5 AutoMate . 13

3 Development Tools 15

3.1 Ocsigen Framework . 16

3.1.1 Component Description . 17

3.1.2 Usage . 17

3.2 Cytoscape.js Library . 19

3.2.1 Usage . 19

4 Page Architecture 23

4.1 Page Design . 23

xi

CONTENTS

4.2 Architectural Pattern . 27

4.2.1 Model . 28

4.2.2 View . 28

4.2.3 Controller . 29

4.3 Generating the page and importing files 30

4.3.1 Generating the page . 30

4.3.2 Importing . 31

4.4 MVC by Example . 37

5 Finite Automata 41

5.1 Functionalities and its presentation . 41

5.1.1 Automata representation . 41

5.1.2 Accept . 43

5.1.3 Type of states . 44

5.1.4 Generation . 46

5.1.5 Convert to Deterministic . 47

5.1.6 Minimize . 48

5.1.7 Clean the Useless States . 48

5.1.8 Convert . 48

5.2 Implementation . 50

5.2.1 Definition of the Automaton . 50

5.2.2 Load file . 50

5.2.3 Creation . 51

5.2.4 Eliminating a state . 54

5.2.5 Creating a transition . 55

5.2.6 Eliminating a transition . 56

5.2.7 Accept . 57

5.2.8 Type of the states . 62

5.2.9 Generate . 63

5.2.10 Convert to deterministic . 64

5.2.11 Minimize . 65

5.2.12 Clean useless states . 66

5.2.13 Convert . 67

6 Regular Expressions 69

6.1 Functionalities and its presentation . 69

6.1.1 Regular Expression Representation 69

6.1.2 Accept . 70

6.1.3 Generate . 71

6.1.4 Convert . 72

6.2 Implementation . 73

xii

CONTENTS

6.2.1 Definition of the Regular Expression 73

6.2.2 Load file . 73

6.2.3 Creation . 74

6.2.4 Accept . 75

6.2.5 Generate . 81

6.2.6 Convert . 81

7 Exercises 83

7.1 Functionality and its representation . 83

7.2 Implementation . 84

8 Testing 89

8.1 Program Tests . 89

8.2 User Tests . 90

9 Conclusions and Future Work 93

9.1 Conclusions . 93

9.2 Future Work . 94

9.3 Final Remark . 94

Bibliography 95

Appendices 99

A Problems in this version of Ocsigen 99

xiii

List of Figures

2.1 JFLAP examples [5] . 9

2.2 Automaton Simulator Web Page [6] with examples of words to be accepted

and words to be rejected . 10

2.3 FSM Simulator Page [21] with an example of an Automaton 11

2.4 Regular Expression Gym Page [40] with an example of a Regular Expression

simplification . 11

2.5 FSM2Regex Page [22] with an Automaton and its corresponding Regular Ex-

pression . 12

2.6 Example of an exercise resolution in Automata Tutor [4] 13

2.7 Example of two pages in Automate [5] . 13

4.1 Initial Page . 24

4.2 Minimization - Functionality that assumes two boxes 24

4.3 Acceptance of a work in an Automaton where there are two results, a right

and a wrong one . 25

4.4 Two different menus experimented . 26

4.5 Model-View-Controller State and Message Sending as seen in [27] 28

4.6 Example of the representation of an Automaton 39

5.1 Example of a Finite Automaton . 42

5.2 Verification of the acceptance of a word - accepted word 43

5.3 Verification of the acceptance of a word - non-accepted word 43

5.4 Verification of the acceptance of a word where there is no transitions with

given symbol . 44

5.5 Indication of the productive states . 45

5.6 Indication of the reachable states . 45

5.7 Indication of the useful states . 46

5.8 Generating accepted words with maximum size 4 46

5.9 Transforming the Automaton in a Deterministic one 47

5.10 Minimization of the Automaton . 48

5.11 Clean the Useless States . 49

5.12 Conversion of finite Automaton in Regular Expression 49

xv

LIST OF FIGURES

6.1 Representation of a Regular Expression . 70

6.2 Example of an accepted word . 70

6.3 Example of a non accepted word . 71

6.4 Generating accepted words with maximum size 4 72

6.5 Conversion of a Regular Expression to a Finite Automaton 72

6.6 Left sub-tree that matches “a” with “(a+b)*(cd)*” 78

6.7 Right sub-tree that matches “b” with “((a+b)*(cd)*)*” 79

6.8 Left sub-tree that matches “a” with “(a+b)*” 79

6.9 Sub-tree that matches “b” with “(a+b)*(cd)*” 79

6.10 Right sub-tree that matches “c” with “((a+b)*(cd)*)*” 80

6.11 Sub-tree that matches “c” with “((a+b)*)(cd)*” 80

6.12 Sub-tree that matches “c” with “cd” . 81

7.1 Representation of an Exercise . 83

7.2 Example of the correction of an Exercise . 84

xvi

List of Tables

2.1 Evaluation of the criteria for each of the highlighted Libraries 6

2.2 Evaluation of the criteria for each of the highlighted Visualization Tools . . . 8

xvii

Listings

3.1 Creation of a service to access the Cytoscape.js Library 18

3.2 Input box creation . 18

3.3 Changing HTML elements . 19

3.4 Creation of a graph in Cytoscape.js . 20

4.1 Registration module and creation of the main service 31

4.2 Creation of the main page . 32

4.3 Registration module and creation of the main service 33

4.4 Creation of the File button . 33

4.5 Module with all the functions used to read a file 34

4.6 Method that defines the type of mechanism to be draw 35

4.7 Server-side functions to access the list of files on the server 35

4.8 Client-side functions to access the list of files on the server 36

4.9 Function that makes the list of the server examples 36

4.10 Function to create the buttons . 37

4.11 Code for the creation of the Automaton in module Controller 38

5.1 Example of a file with the representation of an automaton 51

5.2 Controller method that handles the creation of the automaton 52

5.3 JS module functions to call JavaScript . 52

5.4 Method to call the drawing of the states of the automaton 52

5.5 Method to call the drawing of the transitions of the automaton 53

5.6 Controller method to create initial state 54

5.7 Controller function to eliminate a state . 55

5.8 Controller function to create a transition 56

5.9 Controller function to eliminate a transition 56

5.10 Handler of the Accept Button . 57

5.11 Accept function of the Controller module 57

5.12 Automaton’s accept in the Controller module 57

5.13 Delay function . 58

5.14 Main method to animate the automaton 58

5.15 Method that calls the painting function for each state 59

5.16 Method that decides which color the state is painted with 59

5.17 Button handler to start the step-by-step option 60

xix

Listings

5.18 FiniteAutomatonAnimation method and function to paint the productive

states . 60

5.19 FiniteAutomatonAnimation method to start the accept step-by-step func-

tionality . 60

5.20 FiniteAutomatonAnimation method to go forward on the accept function-

ality . 61

5.21 FiniteAutomatonAnimation method to go back on the accept functionality 62

5.22 Controller function to paint the productive states 63

5.23 FiniteAutomatonAnimation method and function to paint the productive

states . 63

5.24 FiniteAutomatonAnimation method and function to paint the productive

states . 64

5.25 HtmlPageClient function to create two boxes 64

5.26 Controller function to define which colors to be used in the minimization 65

5.27 Controller function to minimize the automaton 65

5.28 Controller function to clean the useless states 66

5.29 FiniteAutomatonAnimation method to clean the useless states 66

5.30 Controller functions to make the conversion from Automaton to Regular

Expression . 67

5.31 FiniteAutomatonAnimation method to convert into Regular Expression . . 67

6.1 Example of a file with the representation of a regular expression 73

6.2 Functions to create the Regular Expression 74

6.3 Method to parse the string to create the syntax tree 75

6.4 Type created to do the list of trees . 75

6.5 Methods to generate all the derivation trees 76

6.6 RegularExpressionAnimation method to define a list with all the accepted

trees . 77

6.7 Method to create the string that will result in the accept graphical tree . . 77

6.8 Functions to generate an Automaton from the Regular Expression 81

7.1 Example of a file with the representation of an exercise 85

7.2 Controller method that organizes the Exercise rendering 86

7.3 HtmlPageClient function to display the exercise on the screen 86

7.4 Method that organizes the presentation of the Exercise result 87

8.1 CyType variable and its respective functions 90

xx

Acronyms

AF Finite Automaton

FCT Faculty of Science and Technology

FDA Finite Deterministic Automaton

FLAT Formal Languages and Automata Theory

NFA Non-Deterministic finite automaton

OFLAT OCaml - Formal Languages and Automata Theory

RE Regular Expression

UNL Nova University of Lisbon

xxi

C
h
a
p
t
e
r

1
Introduction

1.1 Context and Motivation

Given the mathematical and formal character of the topics covered in subjects such as lan-

guages and automata, its teaching and learning processes are demanding and challenging.

Several studies have confirmed these difficulties and evaluated the use of applications to

study this theme [14, 17, 36, 43]. It is important to support students’ autonomous work

with interactive tools that allow them to view examples and solve exercise. However,

most applications are in English and, because they have different focuses, they do not

always meet all needs. While some are quite complete, but are Desktop, and not always

available in different kinds of devices, others are easy to access via browser, although they

are underdeveloped.

In the Portuguese context, in terms of the programs and bibliographies of most Theory

of Computation subjects (or equivalents) at the main universities, it is noticeable that

most of the material is theoretical sometimes missing the use of practical tools. It is also

understood although the material used in class may be Portuguese the bibliography is

mostly in English. Therefore, there is room for an interactive tool, in Portuguese, which

is capable of complementing the theoretical study that is already done in class today.

This thesis arises in the context of a project, called FACTOR, which aims to promote

the use of OCaml in the Portuguese-speaking academic community, namely by supporting

teaching approaches and tools. In particular, it aims to expand and consolidate the user

bases of software and teaching materials in OCaml in Portuguese language for subjects

in the area of Computational Logic and Computer Fundamentals in IT courses.

1

CHAPTER 1. INTRODUCTION

1.2 Objectives

The objective of this project is to develop an application, in Portuguese, that facilitates

the study of Theory of Computation subjects for students of Computer Science, avail-

able through a browser. The idea is to create a tool, OFlat (OCaml - Formal Languages

and Automata Theory), that represents and animates graphically Formal Languages and

Automata Theory algorithms to allow students to visualize the mechanisms and its pro-

cesses to more easily understand them. The FLAT algorithms were created in the context

of another thesis, where it was developed a library called OCaml-FLAT. We intend for

our tool, in the future, to support all topics within Theory of Computation, such as fi-

nite deterministic and non-deterministic automata, stack automata, regular languages,

context-independent languages, LL languages [26] and all the features inherent to these

topics, such as conversions, minimizations and tests. This means that the tool needs to be

extensible, to allow the addition of the new functionalities, easily and effectively. It is also

intended that this tool should be, firstly, adapted to the course of Theory of Computation

[38] taught at FCT-UNL and ready to use in the next edition and also that it includes

not only exercises evaluated automatically and with given feedback, but also allowing

students to create their own exercises.

Due to the project in which this thesis is inserted and the fact that the OCaml-FLAT

library is written in OCaml we decided, as a proof of concept, to try to create a web tool

completely in OCaml. The goal is to develop the application using the Ocsigen Framework,

that allows the creation of interactive web systems, entirely written in OCaml. By using

the features of OCaml, it is possible to obtain fully functional and less error-prone web

pages. Ocsigen also facilitates the creation of web tools, as it allows to write client and

server in the same language, thus facilitating system programming. The use of OCaml
also enables the algorithms to be the most similar to the FLAT mathematical definitions

given in class, which follow the classical literature [30, 44].

1.3 Contributions

The key contributions of this dissertation are the following:

• The development of an extensible application, called OFLAT, achieved through an

organization of the code that allows the easy addition of new mechanisms.

• A web tool developed almost exclusively in OCaml that is simple, interactive, and

user friendly.

• Graphical representation and animation of several functionalities related to Finite

Automata and Regular Expressions, even if not yet fully animated.

2

1.4. DOCUMENT ORGANIZATION

• Creation and representation of simple exercises where the user is asked to define a

language by means of a finite automaton or a regular expression and that gives the

user feedback through a set of unit tests.

• A web tool ready to be experimented and analyzed in class, which is also a way to

understand what is most helpful to the students and what to improve.

The application can be accessed in http://ctp.di.fct.unl.pt/FACTOR/OFLAT and the code

can be seen in https://gitlab.com/releaselab/factor/oflat.

1.4 Document Organization

This document is divided into 9 Chapters and it works at the same time as a User Manual,

a presentation of the application and a code documentation. To do so, we start by doing

two types of contextualization: the first in Chapter 2, addresses the emergence of FLAT

tools and highlights a few that distinguish themselves for some of their characteristics;

the second in Chapter 3 summarizes the elements needed for development of web tools

and its usual languages, and exposes the framework and library used for the development

of the application and specifies their usage. Once the context is finalized we make an

in-depth explanation of the application, starting with a general description of the ap-

plication and its code structure in Chapter 4, followed by an analysis of each one of its

mechanisms in Chapters 5, 6 and 7. These follow the same structure: first they analyze

the presentation of the application or functionality and its usage and then explain the

related code. Furthermore in Chapter 8 we explain the testing that the application went

through to make sure that it is not only usable but correctly implemented. Finally, in

Chapter 9 we present our conclusions and the work that is planned (for the future).

3

C
h
a
p
t
e
r

2
Related Work

Early on it was realized that learning difficulties, and even teaching, in the Study of For-

mal Languages and Theory of Automata was a recurring problem. And that, being a

theme that revolves around processes and abstract machines, the best way to understand

this problem would be through pedagogical tools. The development of these tools has

been done since the beginning of the 1960’s [11]. The article Fifty Years of Automata Simu-
lation: A Review [11] also argues that although there are already many tools, the scientific

community continues to receive new ones because each one is different, having its own

principles and often new uses. In addition, each tool is influenced by the development

tools currently available.

There are textual tools, such as the Prolog Toolkit described in [55], which allows

the creation and testing of automata using text or code, without these being graphically

visible, and tools based on graphical visualization [4, 6, 21, 23]. Some of these will be

analyzed later, in greater depth, because they have similarities with the theme of this

project.

In the research work carried out, many examples of applications were found that, in

some way, aim to overcome the difficulties mentioned by making use of differentiated

solutions. As an example, we can refer the following tools: FSM Simulator [48] a Java

program that makes it possible simulate the acceptance of a word in a finite automata;

Language Emulator [51] a tool that allows working with different concepts within Au-

tomata Theory and that has been used by students at the University of Minas Gerais

in Brazil; jFAST [32] a graphic software that allows the study of finite state machines;

RegeXeX [10] an interactive system for studying Regular Expressions; Forlan [47] tool em-

bedded in the Standard ML language that allows the experimentation of formal languages

and Automata.

It is also important to mention the tool described by Coffin et al. in [13] because it was

5

CHAPTER 2. RELATED WORK

probably the first to be developed in the area. Many others are referred in the article Fifty
Years of Automata Simulation [11].

One can also speak of libraries developed for Formal Languages and Automata, such

as Awali [7] (evolution of Vaucanson [12, 31] and Vaucanson 2 [19]), Grail [39], written

in C++; and FAdo, written in Python. Awali and FAdo are also examples of libraries that

are evolving into graphic applications.

It is also worth mentioning applications such as TANGO [46], JAWAA [35], GUESS
[2] and VisualAlgo [52], for their purpose of animating algorithms or data structures,

being related with this project because of their strong interactive component. Finally, the

platform Learn OCaml [29] stands out for allowing teachers to create different types of

exercises not only for classes but also for evaluation, giving students feedback about their

resolutions.

In the remainder of this chapter some FLAT libraries and visualization tools are going

to be analyzed in terms of ease of installation and access, forms of visualization (including

if it allows the comparison of results), step-by-step execution of algorithms (and if it

allows going forward and backwards), exercises and feedback and comprehensiveness.

2.1 FLAT Libraries

As this project aims at creating an interactive application for working with Regular Ex-

pressions and Automata Theory, it is important to highlight Libraries that in some way

already try to visually represent them. Table 2.2 shows a comparison of the characteristics

analyzed in each Library.

Table 2.1: Evaluation of the criteria for each of the highlighted Libraries

Awali FAdo

Easy access and installation 7 7

Visual representation X– X–

Comparison of conversions X X
step-by-step 7 7

Exercises and feedback 7 7

Comprehensiveness X– X

2.1.1 Awali

Awali [7] is a Library written in C++ that is the evolution of two other platforms: Vau-

canson and Vaucanson2, which allow representing and working with different kinds of

Automata and Rational Expressions (Regular Expressions).

Awali is divided into three layers called static, dynamic and interface. The static

layer is the core of the platform, it is where the data structures and the algorithms are

6

2.1. FLAT LIBRARIES

implemented. The dynamic layer is the one that allows the call of functions of the static

level. The interface layer allows a command-line interface and a Python interface.

The installation is not the easiest one and the user is expected to install a large set

of components (if he does not already have them installed). After the installation to use

the Python interface there is advised to use Jupyter notebook. The Python interface is

very simple, after the user programs the automaton or regular expression it allows him

to visualize it graphically or textually. The user can modify or transform the automaton

or regular expression but, after the changes, the user must issue the command to display

the result again.

Despite already allowing the graphical visualization of Automata and Rational Ex-

pressions (as trees), we must always display the mechanism at each transformation in

order to be able to compare the results. It also does not allow the testing if a word is

accepted by the automaton or the Regular Expression.

Since the documentation is still in development, there are probably some mechanisms

that are yet to be documented and for that reason, a common user does not know they

exist.

2.1.2 FAdo

FAdo [20] is a software library written in Python for the symbolic manipulation of Reg-

ular Expressions and Automata. Its main purpose is to be used as a research tool and

not so much as a teaching mechanism even though it has most of the mechanisms and

functionalities taught in subjects like Theory of Computation.

It allows two types of installation, one easier than the other and like Awali it expects

that the user has installed a large set of components. After the installation it can be used

through a Python 2 command line. This means that this library is mainly used as textual

tool but allows to graphically representing automata as a static image.

This library is very complete and allows working with Regular Languages, Finite

Languages, Transducers and Codes. It allows the creation of models of computation,

like DFA, NFA, Regular Expressions, Context Free Grammars and many others (that

are not mentioned in the context of this thesis) and grants most of the conversions and

transformations, and also enables the testing of the acceptance of a word but only returns

true or false (not showing the acceptance step-by-step).

Automata can be generated graphically. For this reason, if the user saves the graphical

representation and then makes a conversion, when he opens the two images side by side

he can compare the results.

FAdo has a very complete documentation which not only describes thoroughly its API

but also teaches how to use it through some examples.

For a student to use these two platforms he must download them into a computer,

install them and then he has to have a Python console to work on. For this reason they

7

CHAPTER 2. RELATED WORK

are not usable in all types of devices and are not as easy to access and experiment like a

web application.

2.2 FLAT Visualization tools

As stated earlier in the introduction of this chapter, it is understood that there are many

tools that could have been mentioned here. However, we decided to develop a little

further on a few that stand out for different specificities: JFlap, because it is probably the

most complete tool available; Automaton Simulator for being a tool that allows the study

of FA, verifying the acceptance of sentences; FSM Simulator, Regular Expression Gym and
FSM2Regex for being a web applications and allowing the study of FA and RE and their

conversions; Automata Tutor v2.0 because it has an evaluation and feedback system; and

Automate because it is a tool which has objectives that are similar to the purpose of this

project and it is being developed at the same time.

Table 2.2 shows a comparison of the characteristics analyzed in each platform.

Table 2.2: Evaluation of the criteria for each of the highlighted Visualization Tools

JFlap Automaton
Simulator

FSM Automata
Tutor

AutoMate

Easy access and installation
7 X X X X

Visual representation
X X– X X 7

Comparison of conversions
X 7 X 7 7

step-by-step
X– X– X 7 7

Exercises and feedback
7 7 7 X X

Comprehensiveness
X 7 X– 7 7

2.2.1 JFlap

It is a desktop tool that is being developed since 1990 [23]. It stands out for being one

of the most complete tools for the study of Formal Languages and Automata Theory. It

is the result of the work of Susan H. Rodger and a few of her students who, over time,

have developed new functionalities [24, 25]. Although it was initially written in C++
and x windows, it was later rewritten in Java and swing in order to improve the graphical

interface. The source code is available on the web page [23] and GitHub, allowing any

user to modify it.

This software is complemented by a web page that provides explanations and resolu-

tions of exercises and by a guide book for the application usage, which is out of date.

JFLAP has been used for over 20 years in various universities all over the world, and

its positive impact has already been tested [33, 41, 42].

8

2.2. FLAT VISUALIZATION TOOLS

(a) Automata Editor (b) Page to test words step-by-step

Figure 2.1: JFLAP examples [5]

In terms of features, it is possible to work interactively with Finite Automata (convert

NFAs in DFA, NFAs in Regular Expressions or Grammars, minimize DFAs, testing if they

accept words and visualize the acceptance process); Mealy Machines; Moore Machines;

Push-down Automata (creation from context-free languages e vice-versa); three types

of Turing Machines (One Tape, Multi-Tape and with Building Blocks); Grammars; L-

system; Regular Expressions (creation of DFAs, AFAs, Regular Grammars and Regular

Expressions); Regular Pumping Lemma; and Context-free Pumping Lemma.

Despite all of its good points, JFLAP is a desktop application, which means that it is

not accessible in all circumstances (it is necessary to have a computer and the software

downloaded and installed on it to be able to use it). Note that these days students use

mostly mobile equipments.

In JFLAP any conversion process, minimization or of acceptance can be visualized

step-by-step but it does not allow to go a step back. The application is made for the

student to be able to perform the processes on their own, but sometimes, even with

instructions, it may be difficult to understand the rules that are being used for each step

of the process.

Although the functionalities have evolved, the design has become a bit outdated and

its usage is not always intuitive. Very often the support of the online page is needed to

fully understand the correct usage of the program.

2.2.2 Automaton Simulator

The Automaton Simulator [6] is a very simple web tool, with one single web page (Figure

2.2). It was written in JavaScript, jQuery and jsPlumb by Kyle Dickerson, Software Devel-

oper and Technical Leader at the National Laboratory of Lawrence Livermore. The source

code is available at GitHub under the MIT license.

9

CHAPTER 2. RELATED WORK

Figure 2.2: Automaton Simulator Web Page [6] with examples of words to be accepted
and words to be rejected

In this page one can draw graphically three different types of automata - Deterministic

finite automata, Non Deterministic Finite Automata and Pushdown Automata. Neverthe-

less, it is neither possible to generate automata from a regular expression, nor to convert

from NFA to DFA.

After the creation of the automaton it is possible to test the acceptance and rejection

of words, as well as the step-by-step recognition of a word by the automaton. Yet, it only

allows going forward and never backward.

Despite its simplicity, this page is not very intuitive, since it is drawn with the help

of icons, which do not include any type of explanation. Besides that, it has only a few

features.

2.2.3 FSM simulator, Regular Expressions Gym, FSM2Regex

The FSM Simulator [21], Regular Expression Gym [40] and FSM2Regex [22] are three com-

plementary tools that enable the study of Regular Expressions and Automata Theory.

Each of these tools is a web page developed since 2012, by Ivan Zuzak, Web Engineer and

a former professor at the University of Zagreb, and Vedrana Jankovic, Software Engineer

at Google. They are developed in Noam - a JavaScript library that let you work with finite

state machines and regular grammars and expressions, Bootstrap, Viz.js e jQuery. The

source code is available in GitHub, under the Apache v2.0 license.

The FSM Simulator (Figure 2.3) is used for the creation and testing of automata. The

Automata can be generated through regular expressions or text. However, it is not possible

to create them graphically. The user may visualize the processes of recognition of a word

by the automaton, step-by-step, and also move forward or backward whenever necessary.

10

2.2. FLAT VISUALIZATION TOOLS

Figure 2.3: FSM Simulator Page [21] with an example of an Automaton

Despite this, the states are painted always in the same color, not indicating whether the

word is accepted or not. The user looking at the last state has to make his own conclusions.

Figure 2.4: Regular Expression Gym Page [40] with an example of a Regular Expression
simplification

The Regular Expressions Gym (Figure 2.4) is a very simple web page that lets the user

visualize the simplification of a regular expression, all at once or step-by-step. For each

step of the simplification, in both options, the rule used to simplify is indicated.

The FSM2Regex (Figure 2.5) is used to convert a regular expression in an automaton

and vice versa, but it only gives the final solution, without allowing the visualization of

the steps required to reach it.

These three pages are very simple and intuitive tools, but it would be more useful

if they could be integrated in the same page. This way, it would be easier to add new

11

CHAPTER 2. RELATED WORK

Figure 2.5: FSM2Regex Page [22] with an Automaton and its corresponding Regular
Expression

functionalities.

Unlike Automaton Simulator referred to in 2.2.2 these three pages use too much text

to explain the functionalities, which is unnecessary since they are quite intuitive.

2.2.4 Automata Tutor v2.0

The Automata Tutor [4, 18] is a web tool that stands out because it provides a system for

evaluating exercise of Finite Automata and Regular Expressions, thus facilitating the task

for teachers. This tool has gone through three phases of development and several user

tests [17, 18], aimed at improving the application.

The page allows the registration and login into the system as two different kinds of

users: the teacher, to whom is given the possibility of creating a course with his own

exercises and visualize the grades at the end of the course; and the student, who can

sign in to a specific course or do the exercises available on the page outside the courses.

The focus of this page is the resolution of exercises of creation of Regular Expressions

and Finite Automata corresponding to a sentence given in English. When a student

submits a solution, he receives as an answer the grade and some feedback, enabling him

to understand what he did wrong and make corrections if necessary (an example can be

seen in Figure 2.6).

Despite being a very complete application regarding the evaluation of exercises, its

purpose is to give feedback, not allowing the user to experiment solutions freely in order

to understand why it is right or wrong (for example the verification step-by-step of the

acceptance of a word).

12

2.2. FLAT VISUALIZATION TOOLS

Figure 2.6: Example of an exercise resolution in Automata Tutor [4]

2.2.5 AutoMate

AutoMate [5] is a very recent web page, launched in 2019, which is still at a very early

state. It is, however relevant to talk about it, since it is being developed at the same time

as the one described in this paper. The main goal of this tool is to support the study of

computer science students by helping to solve exercises on Finite Automata and Regular

Expressions.

In terms of functionalities, this tool is, for now, very simple, mostly focusing on the

verification and correction of exercises (Figure 2.7a). The resolution of the exercises is

done through text, not being possible to see the automata graphically.

The tool allows the user to carry out exercises on different topics within the Theory

of Computation - Regular Expressions, creating DFAs, transforming NFAs into DFAs

and transforming DFAs into regular expressions. After submitting the resolution of the

exercises the user receives an automatic feedback, in pdf, which is relevant for the student

to know how to improve. However the tool has a limited number of exercises and does

not allow the user to create his own.

(a) Page to solve and see exercises (b) Page to draw the Automaton

Figure 2.7: Example of two pages in Automate [5]

13

CHAPTER 2. RELATED WORK

This tool also contains a page where an automaton can be drawn (see Figure 2.7b),

through text, so that it may be viewed it through an image. However, it is not possible to

perform any type of action on the created automaton.

All of the mentioned tools have their own characteristics. A number of these are in

some way common to the project developed but, excluding the AutomataTutor none of

them allows the lecturers to create exercises in order to use the tool both in class and as

a student assessment system. Our tool stands out because it is prepared to in the future

integrate the Learn OCaml system1 and for this reason, it will allow teachers to create

classroom and assessment exercises that are integrated into the discipline they teach in

Automata Theory.

1https://try.ocamlpro.com/learn-ocaml-demo/

14

https://try.ocamlpro.com/learn-ocaml-demo/

C
h
a
p
t
e
r

3
Development Tools

The tool developed in the context of this thesis is a web application developed mostly in

OCaml. In it the user can work with FLAT mechanisms in order to improve understanding

of how they work. The next chapter will explain the design and code structure of the

application. To provide some background, the current chapter offers a brief summary

of general web technologies and presents the tools selected for the development of the

application.

Typically, a web tool assumes two or three layers, also called tiers: client, server and

database. These are normally developed in different languages, and therefore, to allow

the sharing of data it is necessary to write them in a predefined format.

The client side is the part of the web application in which the user interacts. In each

interaction a request is sent to the server, that responds with an action execution or some

information from the database. This side is mainly developed using three languages:

HTML, CSS and JavaScript.

The server side is the part of the application that determines how it works. The server

receives requests from the client and returns the requested information or the action that

can be executed. The server may be written in several different languages like C, C++,

C#, PHP, Python, Java or even JavaScript.

For the client to communicate with the server, a communication protocol, like HTTP,

is used. The message must also be in an agreed format, the most common being HTML,

XML or JSON. And for the server to be able to communicate with the database it is also

necessary to know how to write queries, normally in SQL or XQuery. Actually, it is not

easy to link all three and make sure that the communication is always correct.

With the need to create more dynamic web pages, and since it is necessary to learn

many languages and components, different frameworks and libraries have started to ap-

pear in order to facilitate the work of the programmer. Some aim to ease the development

15

CHAPTER 3. DEVELOPMENT TOOLS

of the page design, like Bootstrap, with the purpose of creating responsive web pages.

Others intend to facilitate the creation of single page web applications, i.e., reactive. We

have, as examples, AngularJS, a framework that extends the HTML language; and React,
a JavaScript library. Also worth mentioning is jQuery a library JavaScript that aims to

simplify the writing of queries of the language, and frameworks that intend to facilitate

the development of servers with many accesses to the database and that assume code

reuse, like Django and Ruby on Rails.

Despite the emerging of so many frameworks and libraries, the programmer, to create

web applications, always needs to know at least HTML, CSS, JavaScript (or a correspon-

dent) and a language for the server.

With that in mind, other languages and Frameworks started to appear, called tierless,

which means that they aim to allow the creation of websites without having to program

three separate layers. Examples of those are Links and Ocsigen Framework.

Links [50] is a functional programming language for web applications that, when

compiled, generates code for all three tiers from a single source file. It translates into

JavaScript the part to run in the browser, into bytecode the server parts and into SQL the

parts to run in the database. [15].

Ocsigen Framework [34] allows writing web applications completely in OCaml, which

like Links, is a functional programming language. The aim in Ocsigen is for the program-

mer to be able to write Client and Server code as a single layer. When compiled the client

code is translated to JavaScript. It also allows the creation of databases using MaCaQue

(or macaque) that is a DSL for SQL Queries in Caml.

Both Links and Ocsigen seemed like viable options for this project but Ocsigen was

chosen for two main reasons: (1) The library that this project is built on top of is already

written in OCaml; (2) Links is a programming language used for academic purposes, with

a small number of users and active projects, thus more likely to suffer transformations

between versions. Ocsigen is already in use, and there are relevant projects online created

with it.

3.1 Ocsigen Framework

The Ocsigen Framework is a very complete tool that stands out mainly for allowing the

creation of interactive web pages written entirely in OCaml. This framework arises from

the idea that functional programming is an elegant solution to some interaction problems

on web pages [9]. It tries to respond to the new challenges of web pages, that is, the need

for them to behave increasingly like applications [8]. One of its great advantages is to

compile the client’s OCaml code for JavaScript, which makes it possible to work together

with this language and thus use a wide number of libraries, which would otherwise not

be available.

16

3.1. OCSIGEN FRAMEWORK

3.1.1 Component Description

The Ocsigen Framework is actually a set of different components, which reflect the com-

plexity of this tool.

Eliom is the main component of Ocsigen; is an extension of OCaml for programming

without layers (Tierless) [37]. Eliom aims to be a new style of programming that fits

the needs of modern web applications better than the usual programming languages

(designed many years ago, for much more static pages [34]). Its main objective is to

allow the development of a distributed application entirely in OCaml and as a single

program [34] where there is no separation between client and server. To make this

possible, there is a special syntax to distinguish the two. The client can easily access server

variables, as the support system implements this mechanism transparently. Another

important advantage results from the use of static typing of OCaml, making it possible

to check errors and bugs at the time of compilation, making sure that correct web pages

are obtained, with no problems with links or client-server communication. In addition,

Eliom automatically solves frequent security problems on web pages. The Eliom is also

based on the assumption that complex behavior is written in a few lines of code [34]. The

applications developed in this tool run on any browser or mobile device, with no need for

customization.

Js_of_ocaml is the compiler of OCaml bytecode to JavaScript. It is the component of

Ocsigen that allows running the application written in OCaml in JavaScript environments

like browsers [34] [53]. It also enables the integration of JavaScript code in the OCaml
program.

Lwt is the cooperative threads library for OCaml that allows to deal with data concur-

rency and deadlocks problems. It is the standard way of building competing applications.

It allows to place orders asynchronously, through promises. These are simply references

that will be filled out asynchronously when the answer arrives.

Tyxml is the library that allows the construction of statically correct HTML docu-

ments. Tyxml provides a set of combiners, which use the OCaml type system to confirm

the validity of the generated document.

Ocsigen-start is the library and template of an Eliom application with many typical

components of web pages, which aims to facilitate the construction of interactive web

applications.

The Ocsigen-toolkit is the library of widgets that, like Ocsigen-start, aims to facilitate

the rapid development of interactive web applications.

3.1.2 Usage

In order to make the proof of concept - that it is possible to create a web application

almost only in OCaml -, OCaml and Ocsigen are the languages used to program the core

of the application. This is where the page is created, every modification is decided and

every algorithm calculated.

17

CHAPTER 3. DEVELOPMENT TOOLS

Since the main objective of this project was to animate the OCaml-FLAT library, most

of the algorithms are inherited and are written in OCaml. To be able to animate them

sometimes they suffered a few modifications or were remade to fit a purpose.

Every component of the Ocsigen Framework was used in some way. Eliom, since it’s

the core of the framework was used to develop the top layer of the application. This is

basically the use of OCaml language with extra components, like the creation of services

to generate the page or create internal or external links. An example of the creation of a

service can be seen in Listing 3.1. This service allows the creation of a link to access the

Cytoscape.js Library. A service is created through three components: the prefix (line 4),

the main link; the path (line 5), that specifies the path to the page; and the meth (line 6),

that specifies the HTTP method and the HTTP parameters of the service. In the example

we obtain https://unpkg.com/cytoscape/dist/cytoscape.min.js.

1 let script_uri1 =

2 Eliom_content.Html.D.make_uri

3 (Eliom_service.extern

4 ~prefix:"https://unpkg.com"

5 ~path:["cytoscape";"dist"]

6 ~meth:

7 (Eliom_service.Get

8 Eliom_parameter.(suffix (all_suffix "suff")))

9 ())

10 ["cytoscape.min.js"]

Listing 3.1: Creation of a service to access the Cytoscape.js Library

Lwt is used for the animation of the automata, this is going to be developed further

in Chapter 5 but in short it is used to allow the page time to make animated changes to

the automaton.

Tyxml was used to write the page correctly, not only in the initial generation but also

every time a change occurs in it. An example is the creation of an input box that can be

seen in Listing 3.2, this defines the HTML element input with id ’box’ and the input type

as text.

1 let inputBox = input ~a:[a_id "box"; a_input_type ‘Text]()

Listing 3.2: Input box creation

Js_of_ocaml is not only used to compile the program but also to make the dynamic

changes in the page (Listing 3.3) and to communicate with the Cytoscape.js Library (as

explained in the Section 3.2). In the example of the Listing 3.3 we use the Dom_html
Module of the Js_of_ocaml Library to access HTML elements and change its characteristics.

As normally happens when using a new and different framework, the usage of Ocsigen
was not always easy. Throughout the development of the application some difficulties

18

3.2. CYTOSCAPE.JS LIBRARY

1 let oneBox () =

2 let box1 = Dom_html.getElementById "Box1" in

3 box1##.style##.width:= Js_of_ocaml.Js.string "100%";

4 let box2 = Dom_html.getElementById "Box2" in

5 box2##.style##.width:= Js_of_ocaml.Js.string "0%";

6 let buttonBox1 = Dom_html.getElementById "buttonBox1" in

7 buttonBox1##.innerHTML := Js_of_ocaml.Js.string "";

Listing 3.3: Changing HTML elements

have arisen that made the development challenging (a few of the problems are described

in Appendix A).

3.2 Cytoscape.js Library

Cytoscape.js [16] is a graph network library written in JavaScript. It was designed to

make it easier for programmers and scientists to use Graph Theory in their applications,

whether to do analysis on the server or to create complete interfaces.

Cytoscape.js is the evolution of another project called Cytoscape web and is an open-

source project created at the Donnelly Center at the University of Toronto in 2011, which

is still under development to this day, through the contribution of more than 49 different

collaborators. It is part of the Cytoscape Consortium, a non-profit organization that

promotes the use of this software (and others) in the areas of Bioinformatics. This project

is funded by the United States National Institute of Health.

It is a very complete library that lets you easily display and manipulate interactive

graphs and that may be used both in desktop browsers and in browsers of mobile systems,

which in addition contains many functions for graph analysis.

Cytoscape.js is an intuitive, easy to use and very complete library, which also contains

a very developed API, well explained and with examples. Its website also includes several

explanations about the library and a vast set of demos that the user can use as a basis for

his projects.

3.2.1 Usage

Since the Ocsigen Framework allows the joint work of OCaml with JavaScript, for the

graphical part of drawing automata and the syntax trees, we decided to use Cytoscape.js

graph library. The main reason was that while having a complete and easy to use library

do draw the graphs we could focus on other main issues of the project, like how to

animate, how to show and how to organize all the information and not just about the

representation of the graphs.

This library is used in a very simple way. The JavaScript file that creates and changes

the graphs has no power of decision. All the decisions are made in the Ocsigen code and

19

CHAPTER 3. DEVELOPMENT TOOLS

the JavaScript functions are only called in with all the information, to change or create

the representation on the screen.

Listing 3.4 represents the creation (without states and transitions) of an automaton

in the Cytoscape.js library. It defines the division in the page in which the automaton

is going to be drawn (Line 4) and then defines the layout (Lines 5 to 9) and the style

(Lines 10 to 47) of the automata elements, the states (nodes), the transitions (edges) and

its information (names and symbols). If a state is final it will be defined as being part of

the class SUCCESS, which means that it will have double border (defined in Lines 41 to

45). In Line 51 we can see an example of the creation of an element (in this case a node).

Through this code we can also see that it is possible to define new characteristics of a

node, like its position or if it can be moved by the user, using its id (Lines 55 to 57).

1 function start () {

2 number = 0;

3 cy = window.cy = cytoscape({

4 container: document.getElementById(’cy’),

5 layout: {

6 name: ’grid’,

7 rows: 2,

8 cols: 2

9 },

10 style: [

11 {

12 selector: ’node[name]’,

13 style: {

14 ’content’: ’data(name)’,

15 ’width’: ’40px’,

16 ’height’: ’40px’,

17 ’text-valign’: ’bottom’,

18 ’text-halign’: ’center’

19 }

20 },

21 {

22 selector: ’edge[symbol]’,

23 style: {

24 ’content’: ’data(symbol)’

25 }

26 },

27 {

28 selector: ’edge’,

29 style: {

30 ’curve-style’: ’bezier’,

31 ’target-arrow-shape’: ’triangle’

32 }

33 },

34 {

35 selector: ’#transparent’,

36 style: {

20

3.2. CYTOSCAPE.JS LIBRARY

37 ’visibility’: ’hidden’

38 }

39 },

40 {

41 selector: ’.SUCCESS’,

42 style: {

43 ’border-width’: ’7px’,

44 ’border-color’: ’black’,

45 ’border-style’: ’double’

46 }

47 },

48],

49 elements: {

50 nodes: [

51 {data: { id: ’transparent’, name: ’transparent’ }}

52]

53 }

54 });

55 cy.$(’#transparent’).position(’y’, 200);

56 cy.$(’#transparent’).position(’x’, -200);

57 cy.$(’#transparent’).lock();

58 }

Listing 3.4: Creation of a graph in Cytoscape.js

In this chapter we made a resume of the different tools that could have been used

to create the OFlat application. We clarified the framework used to make the proof of

concept and how it was going to be used and explained the library used to draw the

graphs in the application and why its usage was not going to disrupt the proof of concept.

Now that the reader is aware of the tools used to develop the application we can move

forward and demonstrate how it works.

21

C
h
a
p
t
e
r

4
Page Architecture

This chapter intends to give a general explanation of the structure of the OFlat web

application and the respective code developed in the context of this thesis, as well as to

explain details of the code that the different functionalities make use of.

Section 4.1 starts by explaining the structure of the page and its design. It gives a

general idea on how it works and defines why we chose the presented organization of the

elements, we also explain which different types were tested for the menu and why we

kept the one in use. In the end we explain the color scheme and why some color were

chosen for specific functionalities.

After the explanation of the general page, in Section 4.2, we define the Architectural

Pattern used as a basis to organize the code, we describe how it was applied and how it

had to be adapted in order to work with the usage of OCaml.

Furthermore, and now that the reader has a broad sense of how the application works

and is organized, in Section 4.3 we go deeper into the code and explain how the page is

generated in Ocsigen so that the reader has better sense on how this type of programming

works and how the file importing was developed, a functionality that all the mechanisms

make use of.

In the end to better demonstrate how the system works an example is given.

4.1 Page Design

As far as the user interface is concerned, the OFlat application is a very simple web page

with a menu on the left side and a white box on the rest of the page (as it can be seen in

Figure 4.1).

Since users tend to focus their attention on the center of the page, we decided that

this part of the screen should be reserved for the representation of the mechanisms like

23

CHAPTER 4. PAGE ARCHITECTURE

Figure 4.1: Initial Page

Figure 4.2: Minimization - Functionality that assumes two boxes

Automata or Regular Expressions. In this central page we attempt a reuse of the space

in some functionalities. In general when a mechanism is created it is formatted to use

the whole central box, but this can be divided into two smaller ones when a functionality

demands it. The mechanism is set to readjust to the size of the box. For example, if the

user is working with an Automaton and minimizes it, the minimization appears on the

right side as shown in Figure 4.2. The main reason for this is that it is important for the

user to be able to compare the two automata in order to understand the mechanism. This

is a process that will happen with all the mechanisms that imply a transformation or to

show extra information. After making the transformation and analyze it the user can

choose to work with either mechanism, left or right, by clicking the “x” on the top left of

the box with the mechanism to close.

24

4.1. PAGE DESIGN

Under the central box we choose to add a new one that will show extra or information

about the automaton (Figure 4.3) or, if the mechanisms where imported with errors. The

placement was chosen because users normally scan screens [28, 54], they do not read

everything that is shown; this way users can scan the page and read the extra information

if they find it necessary but will not lose focus on the important part of the screen, i.e. the

representation of the mechanisms.

Figure 4.3: Acceptance of a work in an Automaton where there are two results, a right
and a wrong one

For the menu different options were experimented: A dropdown menu on the top, a

dropdown menu on the left (Figure 4.4a) and a button menu as it is right now (Figure

4.4b).

The dropdown menu on the top did not work out because, as the user was clicking,

there were so many options, that those would open on the top of the figure represented

on the central box.

The dropdown menu on the left looked good but, actually, when the user was working

it would become tiresome to always have to think and look for the button we would want

to use. For example, if the user had an automaton and wanted to test the acceptance of a

word he would on click “Autómatos Finitos -> Testar aceitação da palavra” and choose the

button (Figure 4.4a).

In the end, the menu with just the buttons (Figure 4.4b) worked better. With this

menu the user can easily scan for the buttons, and in terms of code the buttons can be

used for different mechanisms that have the same functionalities.

The menu is divided in four parts. The first is the title and the buttons that are

related to the general application. The second part is the one were the user can import

pre-defined examples, from the server or from the filesystem. The third and fourth are

the ones related to the mechanisms, they are divided in two because in the first one all

the buttons depend on the input box and in the second one they are independent. The

25

CHAPTER 4. PAGE ARCHITECTURE

(a) Left menu as a
dropdown

(b) Left menu with
only buttons

Figure 4.4: Two different menus experimented

concept here was to put things that are related close to each other in order to help the

user [54].

In Figures 4.2 and 4.3 it can be seen that, when an automaton is represented, there are

also buttons inside the central or left box. Except the one that is meant to close the box, all

the other buttons correspond to transformations that are only related to finite automata.

For this reason it was decided that it would make more sense if they only appeared when

this mechanism was being used, keeping together what belongs together.

In terms of colors, the ones used for the general page are blue and white. Blue because

it is a color associated with harmony and calmness and therefore it cannot be connoted

with or does not produce negative feelings. When used with grey (color of the buttons) it

is also associated with the practical and functional, which are two fundamental charac-

teristics of this web page. [49]

For the acceptance of words and the evaluation of exercises, green and red were chosen

(Figure 4.3). The main reason is their general significance in our day to day life, as they

are generally associated with right and wrong, go and stop, etc. [49] and thus are self-

explanatory when on screen. For functionalities in which we needed to use more than

one color but these did not have to be associated with any particular significance, we tried

26

4.2. ARCHITECTURAL PATTERN

to use colors that stand apart on the color spectrum and stand apart from each other, to

keep it easy to read and understand. (Figure 4.2).

4.2 Architectural Pattern

Following the organization of the page in this section we explain the pattern chosen to

organize the code and how it was adapted to fit the usage of the OCaml language.

It is important to refer that at a basis of this project there is a library developed in the

context of another thesis, called OCaml-FLAT. In this project the algorithms offered by

the library are graphically represented and animated for the user to be able to interact

with them.

OCaml-FLAT is an OCaml library that supports various FLAT concepts, namely finite

automata, regular expressions and grammars context-free. The most important goal is

for the library code to be understandable to students, meaning that students are able

to recognize the relationship between class definitions and implementation code. The

original class definitions are free of requirements related to computability. It was required

a high level of sophistication to obtain computable and very readable versions those

definitions. Dealing with non-determinism and ensuring termination were the biggest

challenges.

The code organization pattern chosen for this project was the Model-View-Controller.

To maintain this pattern the project is organized in two files from the OCaml-FLAT library,

and two Eliom files, OFlatGraphics and OFlat and one JavaScript file, graphLibrary, that is

required to program the graph library and define the JavaScript functions that create or

modify the graphs. The Eliom files are separated because of their functionalities, the OFlat
file contains all the functions and methods related to the web page and its generation

and the OFlatGraphics has all the methods that can be reused in other applications, for

example if we want to integrate the Learn OCaml system.

MVC or Model-View-Controller is a classic architectural pattern typically used to

organize user interfaces. The purpose is to divide the system in three logical components

that interact with each other [45], the presentation, the interaction and the system data.

Since it separates the components, it allows an efficient reuse of the code [1] and each part

can change without affecting the others [45]. In this project each file mentioned above

corresponds to one of the logical parts, except the OFlat that has modules corresponding

to controllers and to views, which will be covered later in this chapter.

We use the MVC pattern for conceptual orientation even though, at some rare points,

we decided not to apply it strictly to the modular organization of the program. This

happens in some specific point, first when we need to separate the view in different files

and second in some algorithm animations like the acceptance of the word when we need

to turn the methods into a hybrid of the model and the view. What happens in this case is

that the code had to be copied to the view file and modified. The new “animated” version

27

CHAPTER 4. PAGE ARCHITECTURE

Figure 4.5: Model-View-Controller State and Message Sending as seen in [27]

of the code, instead of just giving a result, now changes the image of the automaton while

the operation is being processed.

4.2.1 Model

The model is the application’s central structure, as it contains the main functionalities [27].

Since this project is made on top of the OCaml-FLAT library, the model was inherited.

The files used on this project that represent parts of the model are:

• OCamlFlatSupport is where the data structures are defined.

• OCamlFlat is where all the manipulation algorithms are developed.

4.2.2 View

The view is the component of the system that deals with the graphical part. It’s where

the aspects of the model are displayed for the user to see [27]. It is in this component that

the mechanisms are drawn, and the algorithms are graphically shown to the user.

In this project the view is organized in different modules that are distributed between

three files:

• OFlatGraphics.eliom is where all the code is related to the graphical representation

or animation and also the hybrid methods explained before.

• oflat.eliom which has two different modules that are part of the view, one that makes

the dynamic modifications of the elements of the page and the other that generates

the initial page.

• the JavaScript file graphLibrary.js that draws and modifies the graphs on the specific

division of the page.

28

4.2. ARCHITECTURAL PATTERN

The second file, oflat.eliom, containing a view module, has a simple reason, and it has

to do with the organization of the code. There are two modules, one controller, called

Controller and one view, called HtmlPageClient, that must be mutually recursive because

the view has to associate buttons with handlers (part of the controller) and the controller

has to call view methods. The buttons put on the page when a mechanism is drawn are an

example of this necessity. When the user chooses to draw a mechanism the correspondent

Controller function is called to do it. In its turn this function must call another from

the HtmlPageClient module in order to put the necessary buttons on the page. Each of

these buttons are created in the HtmlPageClient module but if clicked they have to call

the Controller method to define the right action to take. Since these two modules call each

other in OCaml they must to be mutually recursive.

In OFlatGraphics there are four modules:

• JS is a module with js_of_ocaml functions to make logs or alerts.

• Graphics is the module with functions that call the functions on the JavaScript file.

• FiniteAutomatonAnimation is the module with the animation of all the Automata

algorithms, thus being an extension of the module FiniteAutomaton from the library,

it inherits all its class methods.

• RegularExpressionAnimation which, like the previous module, it is the one with

the all the methods that animate the Regular Expressions and extends the module

RegularExpression from the library.

In OFlat there are two view modules:

• HtmlPageClient which is the module that draws the changes on the page, puts but-

tons and text inside the boxes or cleans them. This module is part of the client side

of the application.

• HtmlPage that is the module which has all the HTML elements, such has buttons

and input boxes, that are put on the page when it is generated. Since the page is

generated on the server, this module is on the server side of the page.

The generation of the page is also considered part of the view.

4.2.3 Controller

Controllers are the part of the code that handles the input from the user [1]. Controllers

contain the interface between their associated models and views and the input devices.

[27].

The Controller is activated by callbacks that are registered as on_click and on_change
attributes in graphical elements of the View and then depending on what was clicked

29

CHAPTER 4. PAGE ARCHITECTURE

decides which system information is changed and what View functions are going to be

called.

There are two controller modules and they can be found on the OFlat file:

• Module Controller is the main controller which indicates to the Views the changes

that are going to happen according to the user input.

• Module FileReaderController that is in charge of the actions taken when reading

a file from the filesystem.

• Module StateVariables that, as the name convenes, is where all the state of the page

is stored and changed. The variables that represent the mechanisms, (automata,

regular expressions and exercises) are handlers for the model (the object represents

the model or the view on top of it but the variables are in the controller).

4.3 Generating the page and importing files

Now that the reader has a general sense of the organization of the application, how the

page is designed and how the code is organized, we can go further deep into explaining

more specific parts of the code.

We start by defining how the page is generated, demonstrating how we connect the

Javascript library Cytoscape.js, and how we use Tyxml to create and HTML page.

Afterwards we explained the two different methods of importing files that are used

to import the different types of mechanisms.

4.3.1 Generating the page

In Ocsigen the generation of the page must be done on the server side and implies the

creation of services. These are entry points to a website and are generally associated with

an URL [34]. For the generation of the page we need to create a registration module and

the main service as seen in Listing 4.1. The main service is where we define the path for

the main page and its parameters (Line 10 and 11).

At the point of the creation of the main page we register the service with the registra-

tion module (Listing 4.2). It is at this point that through the Tyxml Library we define the

aspect of the main page. Starting on Line 17 and until the end we define different HTML
divisions where the main elements of the page are inserted, like the buttons of the menu

and the titles of the page.

As it can be seen in Listing 4.2 there are scripts imported at lines 9 to 16. These scripts

are used to access not only the Cytoscape.js library but also the code Javascript and CSS
codes. Like is customary in Eliom these scripts and the links used on the footer of the

page were created as services. An example of a service used to generate a link for an

external service can be seen in Listing 4.3. As explained in Chapter 3, to create a link we

30

4.3. GENERATING THE PAGE AND IMPORTING FILES

1 module OFlat_app =

2 Eliom_registration.App (

3 struct

4 let application_name = "oflat"

5 let global_data_path = None

6 end)

7

8 let main_service =

9 Eliom_service.create

10 ~path:(Eliom_service.Path [])

11 ~meth:(Eliom_service.Get Eliom_parameter.unit)

12 ()

Listing 4.1: Registration module and creation of the main service

define its prefix, its path and the meth. In this case we also define how it is presented in

the page using Tyxml (Line 10).

4.3.2 Importing

4.3.2.1 Import from filesystem

The first option of the menu is to import examples from the local filesystem. The imported

files must be JSON files.

The big question was how to access the file system with Ocsigen? For security and

privacy issues web apps do not have direct access to the files on the user’s device. Direct

access would allow any JavaScript app to steal or erase documents. To read one local file,

we need to use the FileReader API that JavaScript provides. This API is secure because

it requires the user to interactively select the particular file to be read. The FileReader

API functionality is available in Eliom, although with details adapted to the way Eliom
works. The FileReader usage is demonstrated in Listing 4.5 and will be explained in the

remainder of the section.

First, for the user to access the filesystem, it is necessary to create the input box

with its input type as a file (Listing 4.4 line 2) and link to it an action to it, in this case

fileWidgetEvents.

fileWidgetEvents is, actually, a function that associates an action to a change on the

input box through the Js_of_ocaml module Lwt_js_events which programs mouse events

with the use of Lwt (Listing 4.5 line 38). When there is a new input on the box, the new

input is read (Listing 4.5 line 37) and the function fileWidgetHandle is called.

fileWidgetHandler makes used of the Js_of_ocaml module Js.Optdef to manipulate pos-

sible undefined values. This is used for the cases in which the user ends up canceling the

input of the file and there is no file to be read. With the use of the function case (Listing

4.5 line 23), that makes pattern matching on optional values, first the files are read from

the input box (Listing 4.5 line 24), if there is no file the function fileWidgetCanceled is

called (4.5 line 25). This alerts the user that the action has been cancelled. If there is a

31

CHAPTER 4. PAGE ARCHITECTURE

1 let () =

2 OFlat_app.register

3 ~service:main_service

4 (fun () () →
5 let open Eliom_content.Html.D in

6 Lwt.return

7 (html

8 (head (title (txt "Autómatos Animados"))

9 [script ~a:[a_src script_uri1] (txt "");

10 script ~a:[a_src script_uri5] (txt "");

11 script ~a:[a_src script_uri7] (txt "");

12 script ~a:[a_src script_uri8] (txt "");

13 script ~a:[a_src script_uri9] (txt "");

14 css_link ~uri: (

15 make_uri (Eliom_service.static_dir ()) ["codecss.css"]) ();

16 script ~a:[a_src script_uri] (txt "");])

17 (body [div ~a:[a_class ["sidenav"]] [

18 div [h2 ~a: [a_id "title"] [txt "OFLAT"];

19 p ~a: [a_id "version"][txt "version 1.1"]];

20 div [HtmlPage.about];

21 div [HtmlPage.feedback]; hr();

22 div ~a:[a_id "fromFilesystem"][HtmlPage.fileWidgetMake ()];

23 hr();

24 div [HtmlPage.serverExamples];

25 div ~a:[a_id "examplesServer"] []; hr();

26 div ~a: [a_id "inputTitle"] [txt "Input:"];

27 div ~a: [a_id "input"] [HtmlPage.inputBox];

28 div [HtmlPage.selectNode];

29 div [HtmlPage.selectTransitions];

30 div [HtmlPage.defineRegExp];

31 div [HtmlPage.words];

32 div [HtmlPage.completeSentence];

33 div [p ~a:[a_id "passo"] [

34 txt "Aceitação passo-a-passo da palavra"]];

35 div [HtmlPage.backwards;

36 HtmlPage.step_by_step; HtmlPage.forward]; hr();

37 div [HtmlPage.selectConvert];];

38 div ~a:[a_class ["main"]][

39 div ~a: [a_id "mainTitle"] [h1 [txt "Autómatos Animados"]];

40 div ~a: [a_class ["test"]][

41 div ~a:[a_id "Box1"] [

42 div ~a:[a_id "buttonBox"] [];

43 div ~a: [a_id "regExp"] [];

44 div ~a:[a_id "cy"][]];

45 div ~a:[a_id "Box2"] [

46 div ~a:[a_id "buttonBox1"] [];

47 div ~a: [a_id "textBox"] [];

48 div ~a:[a_id "cy2"] []];

49 div ~a:[a_id "infoBox"][]]];

50 footer ~a: [a_class ["footer"]] [txt "Desenvolvido em "; lincs_service;

51 txt " dentro do projeto "; factor_service;

52 txt "/ Financiado por "; tezos_service]

53])))

Listing 4.2: Creation of the main page

32

4.3. GENERATING THE PAGE AND IMPORTING FILES

1 let tezos_service =

2 Eliom_content.Html.D.a

3 (Eliom_service.extern

4 ~prefix:"https://tezos.com/"

5 ~path:[""]

6 ~meth:

7 (Eliom_service.Get

8 Eliom_parameter.(suffix (all_suffix "suff")))

9 ())

10 [div ~a:[a_id "footerButton"][txt "Fundação Tezos"]]

11 [""]

Listing 4.3: Registration module and creation of the main service

1 let fileWidgetMake () =

2 let filewidget = input ~a: [a_id "file_input"; a_input_type ‘File] () in

3 let _ = [%client (

4 Lwt.async (FileReaderController.fileWidgetEvents ~%filewidget): unit

5)] in filewidget

Listing 4.4: Creation of the File button

file, the Js.Opt module is used to try and read the file. This module allows to work with

optional values. If the file could not be read it activates the function fileWidgetCanceled
mentioned above.

To read the file the function onFileLoad is used (Listing 4.5 lines 11 to 20). If there is

no file or the file could not be read it returns a boolean value false, if the file was read the

function fileWidgetAction is used to start the display of the model represented in the file.

This function calls two others, createText and printErrors.

The printErrors is a simple Controller function that upon the verification of the model

gives an alert to the user if the representation has some kind of flaw.

The createText is used to verify which type of mechanism is going to be drawn and

then call the functions that are going to do it. First it makes a series of transformations,

from JavaScript string to OCaml string (Listing 4.6 line 2) and from string to the JSon type

(Listing 4.6 line 3). Then it reads the element “type” of the representation and afterwards

it creates an Automaton, a Regular Expression or an Exercise (defined in the model as

enumeration).

4.3.2.2 Import from server

The second option to create an automaton that is given to the user is to choose an example

from the server. The general idea is that at the moment of the generation of the page all

the files on the example folder are read and is created a button to access each of them

individually. The question here was how to access a server folder and then a file from

that specific folder. To make this possible it was necessary to use the OCaml module Sys

33

CHAPTER 4. PAGE ARCHITECTURE

1 module FileReaderController

2 =

3 struct

4 let fileWidgetCanceled () =

5 JS.alert "Canceled"

6

7 let fileWidgetAction txt =

8 Controller.createText txt;

9 Controller.printErrors ()

10

11 let onFileLoad e =

12 Js.Opt.case

13 (e##.target)

14 (fun () → Js.bool false)

15 (fun target →
16 Js.Opt.case

17 (File.CoerceTo.string target##.result)

18 (fun () → Js.bool false)

19 (fun data → fileWidgetAction data; Js.bool false)

20)

21

22 let fileWidgetHandle filewidget =

23 Js.Optdef.case

24 (filewidget##.files)

25 (fileWidgetCanceled)

26 (fun files →
27 Js.Opt.case

28 (files##item 0)

29 (fileWidgetCanceled)

30 (fun file →
31 let reader = new%js File.fileReader in

32 reader##.onload := Dom.handler onFileLoad;

33 reader##readAsText (Js.Unsafe.coerce file)

34))

35

36 let fileWidgetEvents filewidget () =

37 let fw = Eliom_content.Html.To_dom.of_input filewidget in

38 Js_of_ocaml_lwt.Lwt_js_events.changes

39 fw

40 (fun _ _ → fileWidgetHandle fw; Lwt.return ())

Listing 4.5: Module with all the functions used to read a file

34

4.3. GENERATING THE PAGE AND IMPORTING FILES

1 let createText texto =

2 let txt = Js_of_ocaml.Js.to_string texto in

3 let j = JSon.from_string txt in

4 let kind = JSon.field_string j "kind" in

5 if FiniteAutomaton.modelDesignation() = kind then

6 (let fa = new FiniteAutomatonAnimation.model (JSon j) in

7 defineExample fa)

8 else

9 if RegularExpressionAnimation.modelDesignation() = kind then

10 (let re = new RegularExpressionAnimation.model (JSon j) in

11 defineRegularExpression re)

12 else

13 (let enu = new Enumeration.enum (JSon j) in

14 defineEnum enu)

Listing 4.6: Method that defines the type of mechanism to be draw

that gives a system interface, as seen in Listing 4.7 and the load_file function from the

OCaml module Yojson.basic.util (Listing 4.7 line 19). But there is a catch: the Sys module

can only be used in the server side of the code which means that the methods that use

it must be in a server module only (Listing 4.7). This also means that the buttons, that

have client side functions, could not access this functions. To overcome this problem an

intermediate client module was created (Listing 4.8), this one has its methods called by

the buttons and in its turn accesses the necessary server functions.

1 module%server Server =

2 struct

3 let examplesDirPath =

4 Sys.getcwd () ^ "/static/examples/"

5

6 let log (str: string) =

7 print_string (str^"\n");

8 flush stdout;

9 Lwt.return ()

10

11 let getExamplesList () =

12 let fileList =

13 try

14 Array.to_list (Sys.readdir examplesDirPath)

15 with _ → [] in

16 Lwt.return fileList

17

18 let getExample fname =

19 Lwt.return (Util.load_file (examplesDirPath ^ fname))

20 end

Listing 4.7: Server-side functions to access the list of files on the server

The function examplesDirPath (Listing 4.7 lines 3 and 4) provides the directory where

all the files are stored thanks to the function from the Sys module getcwd (Listing 4.7 line

35

CHAPTER 4. PAGE ARCHITECTURE

1 module%client Server =

2 struct

3 let log = (* logs a message in the server console *)

4 ~%(Eliom_client.server_function [%derive.json: string] Server.log)

5

6 let getExamplesList =

7 ~%(Eliom_client.server_function [%derive.json: unit] Server.

↪→ getExamplesList)

8

9 let getExample =

10 ~%(Eliom_client.server_function [%derive.json: string] Server.getExample)

11 end

Listing 4.8: Client-side functions to access the list of files on the server

4) that allows the access to the directory with a given path.

With the directory obtained with examplesDirPath, the function getExampleList (List-

ing 4.7 lines 11 to 16) tries to make a list of all the files in the folder through the Sys
function readdir. This returns the names of all files in the given directory as a string. If

for some reason the directory could not be read an empty list is returned (Listing 4.7 line

15).

1 let serverexamples_handler =

2 [%client (fun _ →
3 Lwt.ignore_result (

4 let%lwt lis = Server.getExamplesList () in

5 List.iter (fun el → HtmlPageClient.putButton el) lis;

6 Lwt.return ()

7)

8)]

Listing 4.9: Function that makes the list of the server examples

At the moment of the generation of the page the function serverexamples_handler is

called, this gets the list of files with getExampleList (Listing 4.9 line 4) and using the

list iterator for each element of the list creates a button through the function putButton
(Listing 4.9 line 13). The ignore_result (Listing 4.9 line 3) is seen a few times along the

code and is a Lwt function that raises an exception if the result is rejected, which makes

it easier to debug the program.

To create each button putButton was called. This function is used to put the button

on its div in the page (Listing 4.10).

Each button is created with the TyXML format (Listing 4.10 line 2). Each button gets

an onclick function that corresponds to getting the specific example with the function

getExample (Listing 4.10 line 4) and then with its result creating the automaton. To create

an automaton the function createText is called. This function and the consequent ones

were explained in section 4.3.2.1.

36

4.4. MVC BY EXAMPLE

1 let createServerExampleButton name =

2 button ~a:[a_id "exampleButton"; a_onclick (fun _ →
3 Lwt.ignore_result (

4 let%lwt str = Server.getExample name in

5 Lwt.return (Controller.createText (Js.string str))

6)

7)] [txt name]

8

9 let putButton name =

10 (let example =

11 Eliom_content.Html.To_dom.of_button (createServerExampleButton name) in

12 let examples = Dom_html.getElementById "examplesServer" in

13 Js_of_ocaml.Dom.appendChild examples example)

Listing 4.10: Function to create the buttons

getExample (Listing 4.7 line 18) is a server function that using the directory given in

Listing 4.7 line 4 and the name of the file loads a file.

After the button is created it is transformed into JavaScript DOM element with the

Eliom module Eliom_content.Html.To_dom (Listing 4.10 line 11). To get the identification

of the box where the button is going to be put we use JS_of_ocaml module Dom_html
funtion getElementById that allows to get html elements from the page through the id

(listing 4.10 line 12). Finally we use JS_of_ocaml module Dom function appendChild to

add the button to the ones that are already inside the box (Listing 4.10 line 13).

4.4 MVC by Example

This section aims to present a specific example of how the MVC pattern works in this

project. By giving an example we intend to provide a better understanding on how each

component communicates with the others.

The general idea is illustrated by the Figure 4.5. After the generation of the page, every

time there is a user input, like a button click, a controller method indicates what action is

supposed to be taken, it verifies the state of the program, defines the new state and then

indicates to the view what to represent. The view asks the model the information that it

needs to know for the representation and finally it displays on the browser the output.

For this process to be better understood we provide an example as follows.

Let’s imagine that the page has just been generated and the user chooses to click on

an automaton example from the server. For the automaton to be drawn a few modules

are going to be used: HtmlPageClient, Controller, StateVariables and FiniteAutomatonAni-
mation.

As the button is clicked, the Controller function createText that can be seen in Listing

4.6 is called. The function createText transforms the string into the desired format, in

which it verifies which mechanism is going to be drawn (in this case it is the finite au-

tomaton) and calls the method that organizes the drawing: defineExample (also part of

37

CHAPTER 4. PAGE ARCHITECTURE

1 let defineExample example =

2 if StateVariables.getCy2Type() = StateVariables.getEnumerationType() then

3 HtmlPageClient.twoBoxes ()

4 else

5 HtmlPageClient.oneBox();

6 HtmlPageClient.putCyAutomataButtons ();

7 Graphics.destroyGraph();

8 Graphics.startGraph();

9 StateVariables.changeCy1ToAutomaton();

10 StateVariables.changeAutomata example;

11 (StateVariables.returnAutomata())#drawExample;

12 defineInformationBoxAutomaton ()

Listing 4.11: Code for the creation of the Automaton in module Controller

the Controller module), that can be seen starting in line 1.

The function defineExample (Listing 4.11 line 1 to 12) first accesses a model module,

the StateVariables, to check the state of the program as seen in line 2 and according to

the result it calls the view model HtmlPageClient to draw on the screen one or two boxes.

After that, everything is set to draw the automaton, and for that different modules are

called:

• the view module HtmlPageClient is called to put the necessary buttons on the page

(Line 6).

• the view module Graphics is called to prepare the box or division where the automa-

ton is going to be drawn (Lines 7 and 8).

• the controller module StateVariables is called to change the state of the box and the

variable that stores the automaton formatting is changed (Line 9 to 10).

• through the state variable automata the view module FiniteAutomatonAnimation is

called to draw it on the screen (Lines 11 and 12).

In the end we obtain an automaton as represented in Figure 4.6.

All the actions in the page have to go through this system. When an user input hap-

pens, a controller function is called to verify the state of the page, sends an edit message to

change it and then sends messages to the different views to display the intended graphics

and the interaction views.

In this chapter we have attempted to give a better understanding of the application

and its code. The reader now has a general idea of how the application works and we can

go further by explaining each mechanism and its functionalities.

38

4.4. MVC BY EXAMPLE

Figure 4.6: Example of the representation of an Automaton

39

C
h
a
p
t
e
r

5
Finite Automata

In this Chapter, we are going to explain and analyze the functionalities related to the

Automata. The representation of the automata is general and for that reason the automa-

ton can be deterministic or non-deterministic without being specifically defined which.

There are multiple options when defining an automaton to work on. We can load it either

from the server or from the filesystem or create it step by step on the application. After

the creation of the automaton there are several actions that can be carried out: verify if a

word is accepted as an animation or step by step; generate all the accepted words unto a

given size; convert to regular expression; visualize the type of each state; erase the useless

states; make the automaton deterministic; and minimize it.

In Section 5.1 we start by explaining how the Automata are visualized and why and

then explain what each functionality does and how it is shown.

Section 5.2 explains how the automata are represented in the code, its attributes and

how the functionalities were developed.

5.1 Functionalities and its presentation

5.1.1 Automata representation

The graphical representation of an automaton (Figure 5.1) is the usual in the literature:

the initial state is represented by an arrow going to it, the states are represented as circles,

the final states are two concentric circles and the transitions between two states are

represented by an arrow going from one to another.

As explained in Chapter 4 and seen in Figure 5.1, some options are available on the

lateral menu and others only become available upon the creation of the automaton. This

choice has nothing to do with the code but with the fact that the second set of options are

41

CHAPTER 5. FINITE AUTOMATA

Figure 5.1: Example of a Finite Automaton

only related with the automaton and the ones that appear on the menu can be applied to

more than one of the mechanisms that the application supports.

When there is an automaton in the screen it makes use of the whole central box (except

for the space occupied by the buttons) since there is no other mechanisms to be shown

simultaneously.

While the automaton is uploaded, some information about it is generated and shown

in the bottom box. This is extra information that can be helpful for the user but it is not

essential. For that reason it does not have to be in a prominent position.

As stated earlier the automaton can be created in three different ways: imported from

the filesystem, imported from the server or created step by step. The first two generate

a pre-created automaton that fits to its designated space in the screen. The third allows

the user to create, modify and erase states and transitions at will. For that the user has to

input the name of the state in the input box and then choose if he wants to add an initial,

a final or a regular state or erase the state. In the case of the transitions he has to input

the name of the starting state, the transition symbol and the name of the arrival state and

then choose add or erase transition. But there are a few rules:

• The first state, no matter which option the user chooses is going to be an initial state

- the graph needs to have an initial state to be considered an automaton;

• when adding a transition, the states must exist in the representation;

• an initial state cannot be eliminated - the user must first change the initial state and

then erase the one he wants to eliminate.

The options to add and erase state and transitions can also be used after importing an

example, also, the options to add initial or final state can be used to modify an already

42

5.1. FUNCTIONALITIES AND ITS PRESENTATION

existent state, to do so, the user only has to indicate the name of the state and choose the

option.

Every time the figure is changed, its size is adapted to fit the size of the box.

5.1.2 Accept

(a) Initial State (b) Step State

(c) Step State (d) Final State

Figure 5.2: Verification of the acceptance of a word - accepted word

(a) Initial State (b) Step State

(c) Step State (d) Final State

Figure 5.3: Verification of the acceptance of a word - non-accepted word

43

CHAPTER 5. FINITE AUTOMATA

(a) No transitions alert (b) Painted last reached state

Figure 5.4: Verification of the acceptance of a word where there is no transitions with
given symbol

Figure 5.2 shows the process of accepting a word by an automaton (in this case the

word is accepted). The idea is simple. The user inputs a word in the text box and by

clicking the button “Testar frase completa” he can see the states changing color until the

whole word is tested: blue, if it is an intermediate state; red, if the word has come to

an end but the state is not final (Figure 5.3); and green, if the word has come to an end

and the state is final (Figure 5.2). If the word has a symbol that does not correspond to a

transition when reaching that symbol the user is alerted and the verification is finalized

by painting the last reached state in red (Figure 5.4).

There are two types of functionalities related to the word acceptance: one, already

described, allows the user to visualize an animation of the process, the states change

colors automatically until the word is accepted or rejected; the second allows the user to

control the animation through button clicks. This second option relies on three buttons

- start, forward and backwards - and the general idea is to let users walk through the

automaton at their own pace to better understand where its reasoning is going, wrong or

right.

In the step-by-step option the word in the input box is changed at each step for the

user to know what part of the word has been consumed. For example, let us say we are

testing the word “abc”. If we are in the beginning and only click in the “start” button

the word is going to be shown as “|abc” but if we already tested “ab” it is going to show

“ab|c”.

5.1.3 Type of states

There are three reachability related properties that a state can have. Out application

provides three commands to allow the user to understand if the states are:

• productive (Figure 5.5), a state from which it is possible to reach a final state.

• accessible (Figure 5.6), a state reachable from the initial state.

• useful (Figure 5.7), a productive and accessible state.

44

5.1. FUNCTIONALITIES AND ITS PRESENTATION

Figure 5.5: Indication of the productive states

Figure 5.6: Indication of the reachable states

45

CHAPTER 5. FINITE AUTOMATA

Figure 5.7: Indication of the useful states

For each of these options there is a button that marks, simultaneously, all of the states

that satisfy that characteristic.

5.1.4 Generation

Figure 5.8: Generating accepted words with maximum size 4

To help the user understand the language defined by an automaton, there is a generate

command that shows a list of words that are accepted by the automaton. The user has to

input a number in the input box and then the page shows all the words that the automaton

accepts with a length up to the given number, so if the user input a 4 it generates all the

accepted words with size 0, 1, 2, 3, and 4.

46

5.1. FUNCTIONALITIES AND ITS PRESENTATION

The list of words was firstly presented in the bottom box but from the moment we

started having two boxes, we found it better to display it on the right one. This was

because it did not fit the purpose of the bottom box which shows characteristics of the

automaton.

An example can be seen in Figure 5.8. In this case, the automaton does not accept

words with length smaller than 3 which means that by inputting the number 4 it only

generate words with size 3 and 4.

Since the accept method does not make use of the second box, it is also possible to

test the acceptance of the words while they are shown in the right box.

5.1.5 Convert to Deterministic

Figure 5.9: Transforming the Automaton in a Deterministic one

With this functionality, a new question, that extended to other functionalities, emerged:

how to show two automata at the same time. It was necessary not to substitute the au-

tomaton the user was working with but to show the two versions side by side. This way

the can compare the two options and understand the modifications.

To achieve the desired result, we decided to use the two-box system. When there is

only one automaton in the page the main box is full and occupies the width of the page.

When one of these functionalities is executed, the main box shrinks by half and a new

box appears on the right with the new automaton. An example of the result can be seen

in Figure 5.9.

At this point there is no actual animation for this element, mostly because we are

defining mechanisms that are taught in class one at a time. For each mechanism we try to

have the maximum functionalities possible even if it means that they are not already ani-

mated. To show the transformation from one automaton to the other, in this functionality

it was necessary to use a table of transitions (that we see as new mechanism), represented

47

CHAPTER 5. FINITE AUTOMATA

in the library algorithm as different types of sets, and find a way to draw it in the page.

Even though the functionality is represented, its animation is listed in the future work.

5.1.6 Minimize

Figure 5.10: Minimization of the Automaton

This functionality, much like the one before, makes use of the two boxes of the page.

In one box it shows the original automaton and in the other it shows the minimized

automaton. In the original automaton each set of states that are minimized to a single one

is painted in same color and the matching state in the minimized automaton is painted

in the same color as can be seen in Figure 5.10.

The minimization algorithm, analyzes which states could be just one and merges them

together into a new automaton. Separating the states by clusters to show which became

which, facilitates the comparison and helps the student understand the algorithm.

5.1.7 Clean the Useless States

This option erases all the useless states of the automaton, that is, all the states that are

not productive or reachable.

This is one of the functionalities that divide the central box in two smaller ones. In

the right box a new automaton appears without the useless states and on the left box the

useless states of the automaton are colored. In this way, the user can see what are the

states that disappear.

5.1.8 Convert

The last functionality available for the Automata mechanism is the convert functionally.

Since now the application has two mechanisms, Finite Automata and Regular Expressions

48

5.1. FUNCTIONALITIES AND ITS PRESENTATION

Figure 5.11: Clean the Useless States

the conversion, possible at this point is to Regular Expression.

Figure 5.12: Conversion of finite Automaton in Regular Expression

As it can be seen in Figure 5.12, the conversion appears in a second box, much like

some of the functionalities already demonstrated, consisting of text only. Why is it so?

As explained before, one of the reasons to use OCaml was to create a library were the

algorithms are the most similar to those taught in the class of Theory of Computation.

This means that sometimes the algorithms are not the best to animate and could give

somewhat extended results. There is already a simplifying method under use, but to

simplify it even further would mean going beyond the algorithms given in class which

was not the purpose of the project at this stage, it is however an objective for the future.

49

CHAPTER 5. FINITE AUTOMATA

5.2 Implementation

This section will explain how the automaton and its functionalities were implemented to

obtain the visual representations explained in the previous section. We start by explaining

how the automata is represented in the system and the information to insert in the file to

be imported to construct an Automaton, followed by an explanation of the code for each

of the functionalities.

5.2.1 Definition of the Automaton

In terms of OCaml the Automaton is an instance of a class on the FiniteAutomatonAnima-
tion module and its definition consists of:

• alphabet - a set of chars corresponding to the alphabet accepted by the automaton.

• allStates - a set with all the states that compose the automaton

• initialState - the initial state of the automaton

• transition - a set of all the automaton transitions with the format (start state, char

belonging to the alphabet, finish state)

• acceptStates - a set with all the accept states of the automaton

This is a general representation of the automaton that can represent deterministic

or non-deterministic automata. These are semantic properties that are taken care of

or treated in the application. Theory separates the two but in order to simplify the

application and avoid having repeated operations, they are translated to the same data

structure.

The automaton drawn in the page is always stored in a system variable called Au-
tomata or Atomata1 depending on which box displays it. Also, there are two state variables

that represent the boxes where the mechanisms are drawn and indicate which mecha-

nism is drawn in each box, cyType and cyType2. These variables are part of the module

StateVariables, which gives the controller functions to read and modify the variables.

5.2.2 Load file

As explained before there are two types of import operations: from filesystem and from

server. The files have to be in JSon or txt format and the encoding of an automaton is

depicted in Listing 5.1.

The field kind identifies the mechanism that is going to be represented, it is important

for the import method to correctly define the mechanism. The description and the name
fields are not mandatory but allow a better identification of the examples. The remaining

fields compose the representation of the automaton mentioned in Section 5.1.1 and need

to be correctly filled for the system to create the correct automaton. The alphabet is a list of

50

5.2. IMPLEMENTATION

1 {

2 kind : "finite automaton",

3 description : "",

4 name : "010",

5 alphabet : ["0", "1"],

6 states : ["00", "01", "10", "11"],

7 initialState : "00",

8 transitions : [

9 ["00","1","01"], ["00","0","10"], ["01","1","00"], ["01","0","11"],

10 ["11","0","01"], ["11","1","10"], ["10","1","11"], ["10","0","00"]

11],

12 acceptStates : ["01"]

13 }

Listing 5.1: Example of a file with the representation of an automaton

characters, the states and the acceptStates are a list of strings, the initialState is a string and

the transitions is a list of triples composed by start state, character of the alphabet and end

state. It is also important that all the states that appear in the initialState, acceptStates and

transition correspond to the ones in the states list and that the characters which appear in

the transitions are part of the alphabet.

The Section 4.3.2 explains how the two import systems work right to the point where

the method createText is called. Then it is decided which mechanism is going to be

represented.

5.2.3 Creation

There are two types of automaton creation: by importing a complete file and through ad-

dition of states and transitions (the second one also allows the addition of this component

to imported automata). Even though they pass through different stages when accessing

the JavaScript file, they do it in the same way. There is a function to initiate the graph,

one to add states and one to add transitions.

When the automaton is imported to draw it the function defineExample (Listing 4.6

line 7) is called.

How is the box prepared to have the automaton and how is the automaton drawn?

It is at this point that we start using the Cytoscape.js library and the functions created in

the JavaScript file to work with it. As written in Chapter 4, all the imports to access the

Cytoscape.js and the JavaScript functions are put at the beginning of the HTML. Then we

need to use Js_of_ocaml to access a specific function on the JavaScript file. The functions

that implement access to JavaScript from OCaml are in a module called JS. Two of these

functions can be seen in Listing 5.3, the exec one is called with the name of the JavaScript
function. This means that JavaScript functions are called as a string, which, due to some

issues related with the Ocsigen API, was the best way found to do it.

To prepare the automaton, we make use of two functions (Listing 5.2 line 9 and 10):

51

CHAPTER 5. FINITE AUTOMATA

1 let defineExample example =

2 if StateVariables.getCy2Type() = StateVariables.getEnumerationType() then

3 HtmlPageClient.twoBoxes ()

4 else

5 HtmlPageClient.oneBox();

6 HtmlPageClient.putCyAutomataButtons ();

7 StateVariables.changeCy1ToAutomaton();

8 StateVariables.changeAutomata example;

9 Graphics.destroyGraph();

10 Graphics.startGraph();

11 (StateVariables.getAutomata())#drawExample;

12 defineInformationBoxAutomaton ()

Listing 5.2: Controller method that handles the creation of the automaton

1 let eval s = Js_of_ocaml.Js.Unsafe.eval_string s

2

3 let exec s = ignore (eval s)

Listing 5.3: JS module functions to call JavaScript

destroyGraph() cleans the HTML page division, box, if it already has a graph drawn in

it. startGraph defines in the box the characteristics of the new automaton even though it

does not draw states and transitions immediately.

It is now possible to draw the new automaton. For that the method drawExample
(Listing 5.2 Line 11) calls two other methods, first inputNodes (Listing 5.4) and second

inputEdges (Listing 5.5). It must be in this order, because to draw the transitions, the states

must exist already, hence all the states are drawn before the transition. This prevents the

user from worrying about the order in which the transitions are put in the file.

1 method inputNodes =

2 Set.iter (fun el →
3 (Graphics.createNode el (el = self#representation.initialState) (Set.

↪→ belongs el self#representation.acceptStates))

4) self#representation.allStates

Listing 5.4: Method to call the drawing of the states of the automaton

The inputNodes (Listing 5.4) for each state calls the Graphics function createNode,

giving the name of the state, if it is an initial state, and if it is a final one. createNode calls

the JavaScript function with the same information, which, in turn, creates the nodes with

the corresponding characteristics.

The method inputEdge (listing 5.5) for each transition of the automaton calls the

method createEdge that, in turn, calls the JavaScript method responsible for creating tran-

sitions.

The last option to create an Automaton is step-by-step. This method not only allows

52

5.2. IMPLEMENTATION

1 method inputEdges =

2 Set.iter (fun el →
3 (Graphics.createEdge el)

4) self#representation.transitions

Listing 5.5: Method to call the drawing of the transitions of the automaton

the users to create an automaton by inputting states and transition at will, but also enables

the user to modify the automata that is imported from server or filesystem.

Since there were several options related to states and transitions, we decided to use

select boxes instead of buttons to represent each element, state or transition, in an attempt

to simplify the menu. In the select box for the states, the user can choose to add a state, an

initial state, a final state or erase them. For the transitions the user can choose to add or

erase a transition. Before creating or eliminating a state or transition, the user must input

the name of the state in the input box or a triple with start state transition and arrival

state separated by a space (ex. state transition state).

5.2.3.1 Creating a state

There are three different methods to create the three different types of states (each corre-

sponding to an option on the select box): initial state, final state and regular state. Both

the option, initial state and final state, allow to modify an already existent state.

The three functions are very similar (an example of one of these functions can be seen

in Listing 5.6 that represents the creation or change of an initial node) and start by doing

the same verification, if an automaton already exists, if not then it means that it is the first

state to be created and is going to be an initial one. If we are adding the first state of the

automaton the function prepares the box and the variables set to start a new automaton

in the main box (Listing 5.6 Lines 9 to 10), creates a new automaton with the specified

initial state (Line 15) and finally calls the function to draw a state on the screen (Line 20).

If an automaton already exists, each function makes its own changes. If we are adding

an initial state, we know that one already exists since there is no automaton without it,

so we first need to turn the previous initial node into a normal one, hence we eliminate it

and add it again in the representation (Lines 3 to 6). Then addInitialNode method is called

to add a new initial state (Line 9) and finally the automaton is graphically redrawn (Line

11). Why do we not just add the two states to the graphics? If we had erased the graphical

representation of the previous initial state (and the state we are adding if it existed) we

would have also erased all the transitions, which meant that to add then we would have

to find which transition was erased and which one was not. It seemed simpler to reuse

the methods we already had and to redraw the automaton.

Adding a final state differs in one thing: there can be more than one final state which

means no state has to be erased. If the indicated state does not exist it simply adds it as a

new state and to the list of final states, if it does it changes the definition of the automaton

53

CHAPTER 5. FINITE AUTOMATA

1 let addInitialNode node =

2 if StateVariables.getCy1Type() = StateVariables.getAutomatonType() then

3 let getInitial = (StateVariables.returnAutomata())#representation.

↪→ initialState in

4 let isFinal = Set.belongs getInitial (StateVariables.returnAutomata())#

↪→ representation.acceptStates in

5 StateVariables.changeAutomata ((StateVariables.returnAutomata())#

↪→ eliminateNode getInitial true isFinal);

6 StateVariables.changeAutomata ((StateVariables.returnAutomata())#

↪→ addNode blah false);

7 let stateExists = Set.belongs node (StateVariables.returnAutomata())#

↪→ representation.allStates in

8 StateVariables.changeAutomata ((StateVariables.returnAutomata())#

↪→ addInitialNode node false stateExists);

9 Graphics.createNode node true false);

10 Graphics.destroyGraph();

11 defineExample (StateVariables.returnAutomata()));

12 defineInformationBoxAutomaton ())

13 else

14 (if StateVariables.getCy2Type() , StateVariables.getEnumerationType()

↪→ then

15 (HtmlPageClient.oneBox());

16 HtmlPageClient.putCyAutomataButtons();

17 Graphics.startGraph ();

18 StateVariables.changeCy1ToAutomaton ();

19 StateVariables.changeAutomata ((StateVariables.returnAutomata())#

↪→ addInitialNode node true false);

20 Graphics.createNode node true false;

21 defineInformationBoxAutomaton ())

Listing 5.6: Controller method to create initial state

to add it in the final states. In the end it changes the graphical representation.

Adding a normal state differs for a reason: it does not allow to modify and existent

state it only allows to add new ones. This means that if we want to transform a final state

into a normal one, for example, we need to eliminate it and then add it again.

5.2.4 Eliminating a state

To eliminate a state, it is necessary to specify its name in the input box. When the option is

clicked the handler reads the input and the controller function eliminateNode (Listing 5.7)

is called. This method before making the elimination executes the following verifications:

• if the state is initial (Lines 2 to 3) - a initial state can never be eliminated because

the automaton needs to have an initial state to be considered one. In an alert

message it is suggested that the user changes the initial state before erasing it.

• if the state does not belongs to the automaton (Lines 5 and 12) - an nonexistent

state can not be eliminated and the user is alerted that the state does not exist.

54

5.2. IMPLEMENTATION

1 let eliminateNode node =

2 if (node = (StateVariables.returnAutomata())#representation.initialState)

↪→ then

3 JS.alert ("Não é possível eliminar estado inicial, troque o estado

↪→ inicial para outro e depois elimine o indicado!")

4 else

5 if (Set.belongs node (StateVariables.returnAutomata())#representation.

↪→ allStates) then

6 (let isFinal = Set.belongs node (StateVariables.returnAutomata())#

↪→ representation.acceptStates in

7 StateVariables.changeAutomata ((StateVariables.returnAutomata())#

↪→ eliminateNode node false isFinal);

8 Set.iter (fun el → (eliminateNodeTransitions el node)) (

↪→ StateVariables.returnAutomata())#representation.transitions;

9 Graphics.eliminateNode node;

10 defineInformationBoxAutomaton ())

11 else

12 JS.alert ("O estado indicado não existe!")

Listing 5.7: Controller function to eliminate a state

If none of the previous are true, then it eliminates the node from the representation

(Line 7) followed by the elimination of all transitions that have that state (as a start or an

arriving state) with a specific function (Line 8). Then it calls the function that eliminates

the node from the graphical representation (Line 9). The cytoscape.js library function to

eliminate the nodes automatically erases all the transitions related to it from the graphical

representation.

5.2.5 Creating a transition

To create a transition, it is necessary to indicate the state where it starts, the symbol of the

transition and the state where it arrives, these three elements are inserted in the input box

separated by spaces. When the create transition option is clicked the handler reads the

input and calls the controller function createTransition (Listing 5.8). This method before

creating the transition, executes several verifications:

• if an automaton is represented on the screen (line 2) - to create a transition it is

necessary to have states.

• if the transition already exists (Line 2) - a transition cannot be created twice.

• if the starting state exists (Line 8) - to create a transition it needs to start in an

existing state.

• if the arriving state exists (Line 11) - to create a transition it needs to end in an

existing state.

If any of the verifications fail, users have made a mistake and it is necessary to alert

them. If not, then the methods add the transition to the representation with the automata

55

CHAPTER 5. FINITE AUTOMATA

1 let createTransition (v1, c3, v2) =

2 if (StateVariables.getCy1Type() , StateVariables.getAutomatonType()) then

3 JS.alert ("Antes de criar uma transição é necessário ter dois estados")

4 else

5 if (Set.belongs (v1, c3, v2) (StateVariables.returnAutomata())#

↪→ representation.transitions) then

6 JS.alert ("A transição (" ^ v1 ^ ", " ^ String.make 1 c3 ^ ", " ^ v2 ^

↪→ ") já existe!")

7 else

8 (if (Set.belongs v1 (StateVariables.returnAutomata())#representation.

↪→ allStates) != true then

9 JS.alert ("O estado de partida não existe!")

10 else

11 if (Set.belongs v2 (StateVariables.returnAutomata())#representation.

↪→ allStates) != true then

12 JS.alert ("O estado de chegada não existe!")

13 else

14 ((ignore (StateVariables.changeAutomata ((StateVariables.

↪→ returnAutomata())#newTransition (v1, c3, v2))));

15 Graphics.createEdge (v1, c3, v2);

16 defineInformationBoxAutomaton ()))

Listing 5.8: Controller function to create a transition

method createTransition (Line 14) and calls the method to change the graph on the screen

createEdge (Line 15).

5.2.6 Eliminating a transition

1 let eliminateTransition (v1, c3, v2) =

2 if (Set.belongs (v1, c3, v2) (StateVariables.returnAutomata())#

↪→ representation.transitions) then

3 (StateVariables.changeAutomata ((StateVariables.returnAutomata())#

↪→ eliminateTransition(v1, c3, v2));

4 Graphics.eliminateEdge (v1, c3, v2);

5 defineInformationBoxAutomaton ())

6 else

7 JS.alert ("A transição (" ^ v1 ^ ", " ^ String.make 1 c3 ^ ", " ^ v2 ^

↪→ ") não existe!")

Listing 5.9: Controller function to eliminate a transition

To eliminate a transition is as simple as adding one, the user inputs the sequence

start state - transition - arrival state and the controller function (Listing 5.9) calls the

library method that verifies it exists; if so, it calls the automaton method to eliminate the

transition and calls the method from the Graphics module that eliminates the transition

from the graphical representation.

56

5.2. IMPLEMENTATION

5.2.7 Accept

As previously mentioned, there are two types of visualization of the acceptance of a word

by an automaton: animated and step-by-step.

For the acceptance animation to happen, when the button is clicked the input of the

text box is read and the function accept on the module controller is called.

1 let completeSentence_handler = [\%client (fun _ →
2 let i = (Eliom_content.Html.To_dom.of_input ~\%inputBox) in

3 let v = Js_of_ocaml.Js.to_string i##.value in

4 Controller.accept v

5)]

Listing 5.10: Handler of the Accept Button

Listing 5.10 shows the handler for the accept button and as can be seen, to test the

word it is necessary to go through two steps: first we need to read the text box (Line 2)

and then we have to transform the variable to an OCaml string. To achieve the conversion,

we make use of two functions. Eliom_content.Html.To_dom is an Eliom module that makes

the conversion from HTML5 elts to Javascript DOM elements and Js_of_ocaml.Js.to_string
is a Js_of_ocaml function to transform a JavaScript string into an OCaml string. With the

string in OCaml the method accept is called.

As explained in Chapter 4, in Eliom the page is generated in the server. Due to the

input box being put on the page at the time it is generated, the box is on the server side.

Since the handler is client code to access the text on the input box, we must use “˜%”.

This is used in all the methods that require reading information from the server.

1 let accept word =

2 if StateVariables.getCy1Type() = StateVariables.getAutomatonType() then

3 acceptAutomaton word

4 else

5 acceptRegularExpression word

Listing 5.11: Accept function of the Controller module

The method accept verifies the system variable (Listing 5.11 line 2) cyType through

the StateVariable functions getCy1Type() and getAutomatonType() to see if we are working

with an automaton or a regular expression and then calls the corresponding method.

1 let acceptAutomaton word =

2 let w = (StateVariables.returnAutomata())#stringAsList1 word in

3 ignore ((StateVariables.returnAutomata())#accept3 w)

Listing 5.12: Automaton’s accept in the Controller module

The function acceptAutomaton called by the accept function transforms the received

57

CHAPTER 5. FINITE AUTOMATA

string into a list of chars and calls the method acceptAnimated from the FiniteAutoma-
tonAnimation. This function has “!” prepending the call since automata is a reference,

and we need “!” to call one of its methods. “#” tells us that we are calling the method

acceptAnimated of the automaton.

1 let rec delay n = if n = 0 then

2 Lwt.return ()

3 else

4 Lwt.bind (Lwt.pause()) (fun () → delay (n-1))

Listing 5.13: Delay function

1 method acceptAnimated (w: word) =

2 let transition sts sy t =

3 let nsts = Set.flatMap (fun st → nextStates st sy t) sts in

4 Set.union nsts (nextEpsilons nsts t) in

5

6 let rec accept2X sts w t exists =

7 match w with

8 [] → Lwt.bind (delay 100)

9 (fun () → Lwt.bind (

10 Lwt.return (self#paintStates (List.length w) sts exists)

↪→)

11 (fun () → Lwt.return ((Set.inter sts self#

↪→ representation.acceptStates) , Set.empty)))

12 |x::xs → Lwt.bind (delay 50)

13 (fun () →
14 Lwt.bind (Lwt.return (self#paintStates (List.length

↪→ w) sts exists))

15 (fun () → let nextTrans = transition sts x t in

16 if (Set.size nextTrans) = 0 then

17 accept2X sts [] t false

18 else

19 accept2X (transition sts x t) xs t true

20)) in

21

22 let i = closeEmpty (Set.make [self#representation.initialState]) self#

↪→ representation.transitions in

23 accept2X i w self#representation.transitions true

Listing 5.14: Main method to animate the automaton

The basis of the method acceptAnimated (Listing 5.14) was inherited from the Library

OCaml-FLAT but it had to be modified to, instead of returning only true or false, in each

step paint some state of the automaton in a different color. The great difference between

this method and the original is the recursive function accept2X presented from line 6 to

20, that is originally is used to decide if the word is accepted or not and now is used to

paint the states.

This is what it does: starting on the current state (the beginning is always the initial

58

5.2. IMPLEMENTATION

state) it calls the function to paint the new state we arrive to by the given symbol (the next

letter of the word). But simply calling the method to paint is not enough and the page

has no time to change. To allow the graphical update events to modify the visualized

automaton, there are two options: using the OCaml Unix library or using a Lwt thread
library. Since this part of the code is on the client side, the first option turned out to be

impracticable (the Unix library can only be used on the server side). For that reason, we

use Lwt thread library combined with a delay function (Listing 5.13). What happens is

that every time a set of transitions is found, a delay is executed. During this delay the

pause function of the Lwt is used to handles pending events, including the ones that

update the screen.

1 method paintStates length states alphExists =

2 Graphics.resetStyle();

3 Set.iter (fun el → self#paint el length (Set.belongs el self#representation.

↪→ acceptStates) alphExists) states

Listing 5.15: Method that calls the painting function for each state

The method paintStates (Listing 5.15) is the one that is going to function while the

pause is uphold. It resets the style of the graph, so the previous painted states go back

to non colored and then for each of the new states it calls the method paint (Listing 5.16.

This method makes the verification to see which color the state is going to be painted in.

First it makes sure that the label is part of the alphabet, if not a message is sent to the

user and the state is painted in red. If the transition exists then it verifies if the word has

ended or if it is just a step state.

1 method paint state length final alphExists =

2 if alphExists then

3 (if (length != 0) then

4 Graphics.paintNode state stepState

5 else

6 (if (final) then

7 Graphics.paintNode state acceptState

8 else

9 Graphics.paintNode state wrongFinalState))

10 else

11 (Graphics.paintNode state wrongFinalState;

12 JS.alert ("There is no transition with the symbol given!"))

Listing 5.16: Method that decides which color the state is painted with

The paintNode (Listing 5.16 Line 4) is the method which calls the JavaScript function

that changes the color of a state and is used in several other functionalities.

The step-by-step option is based in three button clicks: start, forward and backwards

and since it reacts to on_click actions it does not have to use the Lwt library.

59

CHAPTER 5. FINITE AUTOMATA

The methods to paint the steps paintStates (Listing 5.15) and paint (Listing 5.16) ex-

plained for the accept animation are reused in this functionality.

5.2.7.1 Starting the step-by-step

Users still need to input the word to be tested in the input box, but instead of testing the

complete word they clicks “Start”, this button handler reads the input box and transforms

the string in an OCaml string. With the string, it calls the method startStep that initiates

the step-by-step. In the end the word in the input box changes to show which part of the

word has been tested (Listing 5.17 Line 5).

1 let stepbystep_handler = [%client (fun _ →
2 let i = (Eliom_content.Html.To_dom.of_input ~%inputBox) in

3 let v = Js_of_ocaml.Js.to_string i##.value in

4 Controller.startStep v;

5 i##.value:= Controller.getNewSentence()

6)]

Listing 5.17: Button handler to start the step-by-step option

1 let startStep word =

2 (StateVariables.returnAutomata())#changeTheTestingSentence word;

3 ignore ((StateVariables.returnAutomata())#startAccept)

Listing 5.18: FiniteAutomatonAnimation method and function to paint the productive
states

The function startStep (Listing 5.18) calls the method changeTheTestingSentence (Line

2) that transforms the word in a list of chars and saves it in a variable inside the class.

Then it calls the method to initiate the accept (Line 3).

1 method startAccept =

2 steps ← Array.make 1000 Set.empty;

3 position ← 0;

4 isOver ← false;

5 let i = closeEmpty (Set.make [self#representation.initialState]) self#

↪→ representation.transitions in

6 Array.set steps position i;

7 self#paintStates ((List.length !sentence) - position) (Array.get steps

↪→ position) true;

8 if (position = (List.length !sentence)) then

9 (isOver ← true);

10 self#changeSentence ()

Listing 5.19: FiniteAutomatonAnimation method to start the accept step-by-step func-
tionality

60

5.2. IMPLEMENTATION

The method startAccept (Listing 5.19) starts by initiating three mutable variables, steps
is where the transitions are stored ordered in an array (Line 2), position is the variable that

indicates in which step we are (Line 3) and isOver (Line 4) is the variable that indicates if

the whole was processed or not. These steps and position are important for the step back

and is isOver to the step forward, as we will see next. Afterwards, it calculates the next

transitions (since we are working with any type of finite automaton it can be more than

one) (Line 5), saves them in the step variable (Line 6) at the index defined by the variable

position, which is 0 taking into account that we are still starting the automaton. Then to

show the user the initiation of the accept (Line 7), it paints the initial state in the defined

color (it follows the same rules as the normal accept and uses the same paint method)

using the method paintStates (Listing 5.15). Finally it verifies if the word was empty and

if so indicates that the automaton is finished (Line 9), this allows the user to receive an

alert that the word is over if he clicks the button forward. Finally, the word is changed to

show the bar before the word as explained in the beginning of the chapter (Line 10).

From this point on the user can go forward or backwards to visualize the evolution of

the word in the automaton.

5.2.7.2 Going forward

When the user clicks the button forward represented by an arrow pointing to the right,

the controller function calls automatically the method next of the automaton.

1 method next =

2 if isOver then

3 (JS.alert ("A palavra terminou. Não existem mais estados seguintes."))

4 else

5 (position ← position + 1;

6 let letter = List.nth !sentence (position-1) in

7 let nextSteps = (transition (Array.get steps (position-1)) letter self#

↪→ representation.transitions) in

8 steps.(position) ← nextSteps;

9 if (Set.size nextSteps) = 0 then

10 (self#paintStates ((List.length !sentence) - position) (Array.get

↪→ steps (position-1)) false;

11 isOver ← true)

12 else

13 (self#paintStates ((List.length !sentence) - position) (Array.get

↪→ steps position) true;

14 if (position = (List.length !sentence)) then

15 (isOver ← true;)

16);

17 self#changeSentence ())

Listing 5.20: FiniteAutomatonAnimation method to go forward on the accept functional-
ity

The method next (Listing 5.20) starts by verifying if the word is finished (using the

variable isOver), if so there is no path forward and the user receives a warning that the

61

CHAPTER 5. FINITE AUTOMATA

word is finished. If not, the algorithm starts. It sets the position variable one step forward

(plus one), calculates the next states (Line 7) saves them in the steps variable (Line 8) and

verifies if the next steps are empty (Line 9). If the next steps are empty, it means that

there is not a transition with the given symbol, meaning that there are no paths possible

and the word is not accepted. This is the information given to the paint states method

- the state the user is on and the false that represents the non-existence of the symbol

(Line 10) - and then the variable isOver (Line 11) is changed to indicate that the word is

over because if there was no path from that symbol the remaining of the word could not

accepted. If there are transitions it calls the method to paint the new states and verifies if

the word has been fully read, and if so, it sets the variable isOver to true (Lines 13 to 16).

This method not only finds and paints the next states but also prepares the variables

so that, if the user wants to go back, he only has to access the steps variable and not

calculate the path backwards.

5.2.7.3 Going backwards

If the user chooses to go back, the corresponding controller calls the automaton method

back.

1 method back =

2 position ← position - 1;

3 if position < 0 then

4 (position ← 0; JS.alert ("Não é possível andar para trás do estado

↪→ inicial"))

5 else

6 (self#paintStates ((List.length !sentence) - position) (Array.get

↪→ steps position) (Set.belongs (List.nth !sentence (position-1)) self#

↪→ representation.alphabet);

7 self#changeSentence();

8 isOver ← false)

Listing 5.21: FiniteAutomatonAnimation method to go back on the accept functionality

This method sets the position one step back (minus 1) and then verifies if it became

a negative number. If so, it means that we are already in the initial state and there is no

more going back, so the method alerts the user for that fact. If not, then it paints the

states in the referred position, changes the sentence and sets the variable isOver to false

in case that in the previous step we had reached the end of the sentence.

5.2.8 Type of the states

Since the three options to see the type of the states are similar it is only going to be

demonstrated the option that allows to see all productive states.

When the button is clicked the corresponding method in the Controller module is

called in this case paintAllProductive (Listing 5.23). First the Graphics function resetStyle

62

5.2. IMPLEMENTATION

1 let paintAllProductives () =

2 Graphics.resetStyle();

3 (StateVariables.returnAutomata())#productivePainting

Listing 5.22: Controller function to paint the productive states

(Line 2) is called to clean any style modifications that could have occurred to the automa-

ton before. Then, we get the variable that represents the automaton to call the method

productivePainting (Line 3).

1 let productiveColor = "orange"

2

3 let paintProductive state =

4 Graphics.paintNode state productiveColor

5

6 method productivePainting =

7 let list1 = Set.toList self#productive in

8 iterateList paintProductive list1

Listing 5.23: FiniteAutomatonAnimation method and function to paint the productive
states

This an example of a non-hybrid function, we call the method productive from the

OCaml-FLAT library to get the list of all productive states as seen in Listing 5.23 Line

7 and then for each state the Graphics function paintNode (Line 4) calls the JavaScript

function to paint it. Actually, this is the same function called in the acceptance of the

word. The greatest difference between these two options is that in here we want to paint

more than one state at the same time. That is why in the acceptance the resetStyle is

called each time and in this case it is only called in the Controller function. At each state,

painting the style is updated and never erased.

An example of the three options can be seen in Figures 5.5, 5.6, 5.7.

5.2.9 Generate

To generate all the words until a given size the controller method simply creates the box

on the right with its buttons (Listing 5.24 Lines 3 to 4) and then verifies which mechanism

it is using. If the mechanism in use is an automaton, it calls the method generateUtil from

the OCaml-FLAT library (Line 7) and with the result the function putWords is called (Line

10). putWords is the view function that displays the result, using TyXML it simply defines

the elements that are going to be put in the box, creating a textarea and then inserting

the result inside it.

63

CHAPTER 5. FINITE AUTOMATA

1 let getWords v =

2 StateVariables.changeCy2ToInfo();

3 HtmlPageClient.twoBoxes();

4 HtmlPageClient.putCy2Buttons();

5 let var =

6 if (StateVariables.getCy1Type() = StateVariables.getAutomatonType()) then

7 (StateVariables.returnAutomata())#generateUntil v

8 else

9 (StateVariables.returnRe())#generate v in

10 HtmlPageClient.putWords var

Listing 5.24: FiniteAutomatonAnimation method and function to paint the productive
states

1 let twoBoxes () =

2 clearBox2 ();

3 let box1 = Dom_html.getElementById "Box1" in

4 box1##.style##.width:= Js_of_ocaml.Js.string "49.5%";

5 let box2 = Dom_html.getElementById "Box2" in

6 box2##.style##.width:= Js_of_ocaml.Js.string "49.5%";

7 StateVariables.halfSize();

8 Graphics.fit()

Listing 5.25: HtmlPageClient function to create two boxes

5.2.10 Convert to deterministic

As explained in section 5.1.5, this was the functionality that brought the question: How to

show two mechanisms at the same time? To do so, we did some research in the Js_of_ocaml
API in order to find a way to change the style of the page. We found that after getting an

element with the Dom_html module we could access the style and its elements as show in

listing 5.25. This way we could change the page elements to allow the representation of

two elements.

Having two boxes means having a new variable that represents the automaton drawn

in the second box, this is the automata1 variable and is represented in the module State-
Variable.

So, what does it do? It simply calls the library algorithm that generates the determin-

istic automaton, it creates the representation and then represents it in the box on the

right.

To draw the automaton in the box the drawExamplel function from the FiniteAutomato-
nAnimation module is called. This function works exactly like the drawExample explained

in Chapter 4 but instead of calling JavaScript functions to draw into box one, it calls the

one that draws on box two.

64

5.2. IMPLEMENTATION

1 let setColor number =

2 if (number ≤ 20) then

3 listColorsBig := listColors

4 else

5 (for i=0 to 19 do

6 Array.set !listColorsBig i (Array.get listColors i)

7 done;

8 for i=20 to number-1 do

9 let newColor = Graphics.getRandom() in

10 Array.set !listColorsBig i newColor

11 done)

Listing 5.26: Controller function to define which colors to be used in the minimization

1 let defineMinimized () =

2 if ((StateVariables.returnAutomata())#isDeterministic) then

3 if ((StateVariables.returnAutomata())#isMinimized) then

4 JS.alert ("O Autómato já é minimo")

5 else

6 (HtmlPageClient.twoBoxes();

7 StateVariables.changeCy2ToAutomaton();

8 HtmlPageClient.clearBox2();

9 HtmlPageClient.putCy2Buttons ();

10 Graphics.startGraph1();

11 Graphics.fit();

12 StateVariables.changeAutomata1 ((StateVariables.returnAutomata())#

↪→ minimize1);

13 let number = (StateVariables.returnAutomata())#getNumberColors in

14 setColor number;

15 (StateVariables.returnAutomata())#paintMinimization !listColorsBig

16 (StateVariables.returnAutomata1())#drawMinimize !listColorsBig number)

↪→
17 else

18 JS.alert ("O Autómato tem de ser determinista para poder ser minimizado

↪→ ")

Listing 5.27: Controller function to minimize the automaton

5.2.11 Minimize

For the two automata to be able to paint the cluster and corresponding state in the same

color, we defined a list of 20 contrasting colors that we give to each method. If there

is more than 20 clusters there is a function that generates the number of extra colors

necessary (Listing 5.26). This function is called after the minimized automaton is created

(Listing 5.27 Line 13), because we need the minimization to know the number of clusters.

The main reason for the list of colors and the new ones generated in the controller is

that the list given to each automaton method must be exactly the same.

Since the automaton has to be deterministic to be minimized this is the first verifica-

tion that the minimization function does (Listing 5.27 Line 2). If the automaton is ready

to be minimized the function goes through the process of representing the minimization.

65

CHAPTER 5. FINITE AUTOMATA

After the page is prepared (Lines 6 to 11) the representation of the minimized automaton

is created on the respective system variable (line 12), the number of clusters is defined to

set the necessary colors (lines 13 and 14), the list of colors is then used to paint the states

on the original automaton (line 15) and to create an already painted automaton in the

right box (line 16).

The methods paintMinimization and drawMinimized are from the FiniteAutomatonAn-
imation module and they are used to change the appearance of the automaton. The

function paintMinimization is used to change the original automaton, for each cluster it

gets a color and calls the Graphics function to paint the states (same function used in

the accept and in the type of states). The method drawMinimized works in a way that is

similar to the drawExample1 but instead of only calling the function to create the nodes,

it calls one that creates and paints each one in the respective color. Then, it inputs the

transitions in the same way.

5.2.12 Clean useless states

1 let cleanUseless () =

2 if ((StateVariables.returnAutomata())#areAllStatesUseful) then

3 JS.alert ("O Autómato não tem estados para limpar, não existem estados

↪→ inuteis!")

4 else

5 (HtmlPageClient.twoBoxes();

6 HtmlPageClient.putCy2Buttons ();

7 StateVariables.changeCy2ToAutomaton ();

8 Graphics.startGraph1();

9 StateVariables.changeAutomata1 (

10 (StateVariables.returnAutomata())#cleanUselessStates1);

11 (StateVariables.returnAutomata1())#drawExample1;

12 defineInformationBoxAutomaton ())

Listing 5.28: Controller function to clean the useless states

1 method cleanUselessStates1: FiniteAutomatonAnimation.model =

2 Graphics.resetStyle();

3 let uss = self#getUselessStates in

4 Set.iter (fun el → paintUseful el) uss;

5 let useless = super#cleanUselessStates in

6 let rep = useless#representation in

7 new FiniteAutomatonAnimation.model (Representation rep)

Listing 5.29: FiniteAutomatonAnimation method to clean the useless states

The controller method (Listing 5.28) follows the same scheme as seen before. First it

asks the model if there is anything to erase, if not it alerts the user (Lines 2 and 3). If there

is states to erase, it divides the page into two boxes and puts the buttons on the page (Line

5 and 6), changes the state of the page (line 7), initiates the graph by calling the JavaScript

66

5.2. IMPLEMENTATION

methods (Line 8) and then while it defines the state variable with the new automaton it

paints the states in the already represented one (Line 10) with method cleanUselessStates1
(that can be seen in Listing 5.29). To draw the automaton in the box, we use the function

drawExamplel that is similar to drawExample explained in 5.2.3.

5.2.13 Convert

1 let automatonToRegExp() =

2 if StateVariables.getCy1Type() = StateVariables.getRegexType() then

3 JS.alert ("Já está a trabalhar com uma expressão regular")

4 else

5 (let reg = (StateVariables.returnAutomata())#toRegularExpression1 in

6 let rep = reg#representation in

7 let re = new RegularExpressionAnimation.model (Representation (rep)) in

8 defineRegularExpression1 re)

Listing 5.30: Controller functions to make the conversion from Automaton to Regular
Expression

This functionality follows a lot of the logic already explained. When a user chooses

the option, a method from the Controller is called (Listing 5.30), it verifies which mecha-

nism the user is working with and gives an alert if the user is trying to convert it to the

same type of mechanism (Lines 2 and 3), if not, it calls the respective FiniteAutomato-

nAnimation method toRegularExpression1 that generates the Regular Expression (Line 5),

gets its representation (Line 6) and transforms it into a RegularExpressionAnimation (Line

7) and then calls the Controller function defineRegularExpression1 (Line 8) to draw it on

the screen.

Why making the transformation into RegularExpressionAnimation? Since FiniteAu-
tomatonAnimation RegularExpressionAnimation modules are not mutually recursive the

module FiniteAutomatonAnimation only has access to the model functionalities and mod-

ules in the OFlat file, which means that it can only create a RegularExpression. If at some

point there is the necessity for this regular expression to access the methods for the an-

imation it has to be in the RegularExpressionAnimation format, this way this is already

taken care of.

1 method toRegularExpression1 =

2 let reg = self#toRegularExpression in

3 reg#simplify

Listing 5.31: FiniteAutomatonAnimation method to convert into Regular Expression

The method toRegularExpression1 (Listing 5.31) simply calls the model method that

returns the necessary regular expression (line 2) and returns it simplified (achieve with a

call to the model) (line 3).

67

CHAPTER 5. FINITE AUTOMATA

In this chapter we explained the Automata mechanism and its functionalities. Some

of them are common to the Regular Expression whilst implemented in a different way, as

we are about to see in the next chapter.

68

C
h
a
p
t
e
r

6
Regular Expressions

In this Chapter we explain the functionalities related to the Regular Expressions. Regular

Expressions can be imported from the filesystem or the server, or else manually entered

in the input box. After the creation of the regular expression there are several actions

that can be carried out: verify if it matches a particular word; generate all the matched

words up to a given maximum length; and convert it to a Finite Automata.

“Match” is the strictly correct verb to convey the meaning that a word belongs to the

language represented by a regular expression. However, in this document, we tend to use

the verb “accept” with broad meaning across all FLAT models. So, in the case of regular

expressions, on many occasions we will use “accept” instead of “match”.

Following the formatting of the previous chapters, in Section 6.1 we start by explain-

ing how the Regular Expression is displayed on the screen and then how each functional-

ity related to the Regular Expression is shown and why.

After the graphical representations are demonstrated we present in Section 6.2 an

explanation of how the code works for each functionality.

6.1 Functionalities and its presentation

6.1.1 Regular Expression Representation

When we were developing the functionalities related to this mechanism, one of the biggest

questions that emerged was how to represent the regular expression in a way that helped

the user to understand it. In general, it is only presented as a string. We decided that

it should be displayed both by the string and by the syntax tree that represents it. The

tree emphasizes the regular expression structure and helps the user to understand it, an

example of which can be seen in Figure 6.1. As shown in the figure, by default, the tree is

69

CHAPTER 6. REGULAR EXPRESSIONS

Figure 6.1: Representation of a Regular Expression

presented horizontally to make the best use of the space, however, there is a button in the

upper right corner that allows the user to turn the tree clockwise and place it vertically.

6.1.2 Accept

Figure 6.2: Example of an accepted word

The acceptance of a word by a Regular Expression is a functionality not often seen in

applications but a very useful one for students since they must apply it in class.

Given that a Regular Expression, even represented as a syntax tree, is not a mechanism

that can be as easily animated as the automaton, there is not a visible sequence of steps.

To bypass this problem, it was decided that we would use a derivation tree to show the

70

6.1. FUNCTIONALITIES AND ITS PRESENTATION

Figure 6.3: Example of a non accepted word

acceptance of the word. Each tree shows the several steps taken to break the word into

different parts that try to match each part of the regular expression.

How does it work? The user must insert the word to test in the input box and then

by clicking the button “testar frase completa” the word is evaluated. This means that

the system is going to test if the word matches the regular expression. It is important to

refer that some of the rules that define the match operations are non-deterministic. This

means that different combinations of the rules allows the system to find matches and

non-matches in different ways.

To show the answer, the box on the right is opened and in it is inserted first the

result (if the word is accepted or not), how many ways the word could be matched by

the regular expression and how many ways it could not. And finally it represents all

the syntax trees as a list, each syntax tree shows the steps made to match the word to

the regular expression showing which part of the word is matched to which part of the

regular expression. Those trees can be navigated using the buttons inserted in the box.

If the word is accepted, the mechanism only shows the trees with the successful word

derivations (Figure 6.2) and if not, it shows all the unsuccessful trees (Figure 6.3). In the

latter case the trees show a Fail in red for each time the matching fails. It is important to

refer that in this system “˜” represents the empty word.

6.1.3 Generate

The generate functionality works the same way has the one presented in Chapter 5. The

user inputs a number in the input box and, after clicking the generate button, the system

generates all the words that matches the regular expression until a given length.

71

CHAPTER 6. REGULAR EXPRESSIONS

Figure 6.4: Generating accepted words with maximum size 4

To keep the logic of the application the result is presented as a list in the box on the

right as is happened with the automaton. An example can be seen in Figure 6.4.

6.1.4 Convert

The last functionality available for the Regular Expression mechanism is the convert func-

tionally. Since the application currently supports only two mechanisms, Finite Automata

and Regular Expressions, the conversion that is possible at this point is to Finite Automa-

ton. The method used in the OCaml-FLAT library to convert the regular expression into

an equivalent NFA is the a variant of the Thompson’s construction algorithm [3].

Figure 6.5: Conversion of a Regular Expression to a Finite Automaton

72

6.2. IMPLEMENTATION

Following the logic of the functionalities that generate a new mechanism, the result

of the conversion (an automaton) is generated in the box on the right (Figure 6.5). This al-

lows the user to analyze and compare the two mechanisms and understand the conversion

from RE to NFA.

For now, this functionality is not yet animated or step-by-step. The reason for this is

that there was not sufficient time to find a good way to animate the algorithm and make

it work correctly so we made the decision to postpone it and include in the future work.

6.2 Implementation

Now that each of the functionalities is explained we can demonstrate how they were

implemented and how the code works. To understand the functionalities we start by

explaining how the Regular Expression is represented in the code, and then go forward

by explaining what is necessary to put in the file representing a Regular Expression if we

want to import a RE, how a RE is created and then the action that can be achieved with it.

6.2.1 Definition of the Regular Expression

In terms of OCaml the Regular Expression represented on the screen is saved in the RE
variable stored on the StateVariables module. This variable is a handler for the Regular-
ExpressionAnimation module and is defined by a type specified in the library. The user is

oblivious to this definition and only has to define the regular expression as a string unlike

the automaton definition. The type defines the regular expression through its elements:

star, plus, sequence, etc.

6.2.2 Load file

As stated before, much like the Automaton, the Regular Expression can be imported from

the server or from a local filesystem. The information on the file is simpler than the one

for the Automata as seen in Listing 6.2. The first three fields have the same objectives

as the ones for the Automaton and the field re is simply the string that represents the

regular expression.

1 {

2 kind : "regular expression",

3 description : "this is an example",

4 name : "abc",

5 re : "((a+b)*(cd)*)*"

6 }

Listing 6.1: Example of a file with the representation of a regular expression

73

CHAPTER 6. REGULAR EXPRESSIONS

6.2.3 Creation

The three types of Regular expression creation, from server, filesystem or by inputting it

on the input box, make use of the same methods to create and display the Regular Expres-

sion. When there is a user action it means that the controller is called. The function from

the controller that starts the drawing of the Regular Expression is defineRegularExpression.

1 let rec func (re: RegExpSyntax.t) =

2 match re with

3 | Plus (l, r) → "+"^ func l ^ func r

4 | Seq (l, r) → "."^ func l ^ func r

5 | Star (re) → "*"^ func re

6 | Symb (b) → String.make 1 b

7 | Empty → "E"

8 | Zero → "Z"

9

10 let defineRegularExpression example =

11 if StateVariables.getCy2Type() , StateVariables.getEnumerationType() then

12 (HtmlPageClient.oneBox());

13 StateVariables.changeCy1ToRegex ();

14 StateVariables.changeRe example;

15 Graphics.destroyGraph();

16 HtmlPageClient.putCyREButtons();

17 let test = RegExpSyntax.toString (StateVariables.returnRe())#

↪→ representation in

18 HtmlPageClient.defineRE test;

19 let test1 = func ((StateVariables.returnRe())#representation) in

20 Graphics.startGraph2(test1)

Listing 6.2: Functions to create the Regular Expression

What does the function do? First, it prepares the page to accommodate the Regular

Expression (Listing 6.2 lines 12 to 16). Then using Js_of_ocaml the string representing the

regular expression is written on the screen through the calling of the function defineRE
in the HtmlPageClient module (Line 18). Finally, the tree is created (Line 20). This

graphical creation differs greatly from the automaton for a reason. In the automaton,

since we have the step-by-step creation those methods where reused when creating the

complete automaton. In this case it made no sense to have a step-by-step creation. What

happens is this: from the OCaml tree representation we create a pre-order traversal of

the tree, codified in a simple string. Then that string is parsed in a JavaScript method to

create a list of nodes and a list of edges that represent the RE. The function used to create

the string can be seen in Listing 6.2 lines 1 to 8, this is a recursive function that reads

the outermost element of the regular expression setting it as an element of the string and

recursively doing the same with its components until the RE is decomposed.

As an example, we have the RE represented in Figure 6.1, “(a+b)*(cd)*)*” that is passed

to the JavaScript function as “*.*+ab*.cd”. This means that the first node is “*” (star) and

its son, (since star only has one argument) is “.” (the concatenation). The concatenation

74

6.2. IMPLEMENTATION

in its turn has two sons “+” (plus), followed by its own sons “a”and “b”, and “*” (star) and

so on until the whole RE is redefined.

The JavaScript function parses the string recursively to create node and edges, as can

be seen in Listing 6.3. This function with the used of a switch (Lines 6 to 16) reads the

first element of the string, creates its node and through a call to the same function the

same is done to its sons, using their creation to define the edges between them. With

the list of nodes and the list of edges, the graph can be created automatically with its

elements.

1 function makeTree1 (s) {

2 var idgen = "n"+ number;

3 number ++;

4 var str = s;

5 var st = str[0];

6 switch (st) {

7 case ’E’: return [idgen, [{data: {id: idgen, name: "()"}}], [], str.substr(1)];

8 case ’+’: var [lid, lnode, ledge, lret] = makeTree1 (str.substr(1));

9 var [rid, rnode, redge, rret] = makeTree1 (lret);

10 return [idgen, [{data: {id: idgen, name: "+"}}].concat(lnode).concat(rnode),

↪→ [{data: {source: idgen, target: lid}}].concat([{data: {source: idgen,

↪→ target: rid}}]).concat(ledge).concat(redge), rret];

11 case ’*’: var [cid, cnode, cedge, cret] = makeTree1 (str.substr(1));

12 return [idgen, [{data: {id: idgen, name: "*"}}].concat(cnode), [{data: {

↪→ source: idgen, target: cid}}].concat(cedge), cret];

13 case ’.’: var [lid, lnode, ledge, lret] = makeTree1 (str.substr(1));

14 var [rid, rnode, redge, rret] = makeTree1 (lret);

15 return [idgen, [{data: {id: idgen, name: "."}}].concat(lnode).concat(rnode),

↪→ [{data: {source: idgen, target: lid}}].concat([{data: {source: idgen,

↪→ target: rid}}]).concat(ledge).concat(redge), rret];

16 default: return [idgen, [{data: {id: idgen, name: st}}], [], str.substr(1)];

17 }

18 }

Listing 6.3: Method to parse the string to create the syntax tree

6.2.4 Accept

1 type reTree =

2 Fail

3 | Tree of word * RegExpSyntax.t * reTree list

Listing 6.4: Type created to do the list of trees

The accept functionality for the regular expressions is one of the most complex ones

since it needs to generate several syntax trees. To create the trees, we have defined a type

tree in OCaml (Listing 6.4). The tree can be a Fail which means that the element of the

75

CHAPTER 6. REGULAR EXPRESSIONS

1 method getTrees w =

2 let partition w =

3 let rec partX w pword =

4 match w with

5 [] → Set.empty

6 | x::xs → let fwp = pword@[x] in

7 Set.add (fwp, xs) (partX xs fwp) in

8 Set.add ([],w) (partX w []) in

9

10 let rec acc w rep =

11 match rep with

12 | Plus(l, r) →
13 let l1 = acc w l in

14 let r1 = acc w r in

15 List.map (fun t → Tree (w, rep, [t])) (l1 @ r1)

16 | Seq(l, r) → let wps = partition w in

17 let wpl = Set.toList wps in

18 List.flatten (List.map (fun (wp1, wp2) →
19 let tl = acc wp1 l in

20 let tr = acc wp2 r in

21 List.flatten (List.map (fun x → List.map (fun y → Tree (w,

↪→ rep, [x; y])) tr) tl)

22) wpl)

23 | Star(re) → if w = [] then

24 [Tree ([’~’], rep, [])]

25 else

26 (let wps = Set.remove ([],w) (partition w) in

27 let wpl = Set.toList wps in

28 List.flatten (List.map (fun (wp1, wp2) →
29 let tl = acc wp1 re in

30 let tr = acc wp2 (Star re) in

31 List.flatten (List.map (fun x → List.map (fun y → Tree

↪→ (w, rep, [x; y])) tr) tl)

32) wpl))

33 | Symb(c) →
34 if w = [c] then

35 [Tree (w, rep, [])]

36 else

37 [Tree (w, rep, [Fail])]

38 | Empty →
39 if w = [] then

40 [Tree ([’~’], rep, [])]

41 else

42 [Tree (w, rep, [Fail])]

43 | Zero → [Tree (w, rep, [Fail])]

44 in

45 acc w self#representation

46

47 method startAllTrees w =

48 allTrees ← self#getTrees w;

49 position ← 0

Listing 6.5: Methods to generate all the derivation trees

76

6.2. IMPLEMENTATION

word was not matched, or a triple composed by a word, a RE and a list with the remaining

elements of the tree.

The controller method starts by calling the RegularExpressionAnimation method star-
tAllTrees (Listing 6.5 Line 47), which through the method getTrees restarts the list that

contains all the generated trees and restarts the variable that indicates the position in the

list of the tree represented in the screen.

The method getTrees (Listing 6.5 Line 1) is a replica of the Ocaml-FLAT library method

called accept that recursively tries to match the word to the RE and in the end indicates if

the word was accepted (through a boolean). In this case the method was modified to save

all the steps taken and make a list of all the possible trees. Through a recursive function

(Line 10) the word is recursively partitioned and matched to an element of the RE. To

test all the possibilities of matching the word to the RE the word is partitioned in three

ways “˜ (Empty word) + word”, “first element of the word + rest of the word” and “word

+ ˜” this is done with the partition function (Line 2). The same happens for each sub-word

until all the word is tested.

1 method getRightTrees =

2 let rightTrees = List.filter (fun x → isNotFail x) allTrees in

3 allTrees ← rightTrees;

4 List.nth allTrees position

Listing 6.6: RegularExpressionAnimation method to define a list with all the accepted
trees

1 method printTree t =

2 match t with

3 Fail → "Fail" ^ "|/"

4 | Tree ([], re, []) → ""

5 | Tree ([], re, x::xs) →
6 (self#printTree x) ^ "" ^ (self#printTree (Tree ([], re, xs))) ^ ""

7 | Tree (w, re, []) →
8 let blah = String.concat "" (List.map (String.make 1) w) in

9 let regex = RegExpSyntax.toString re in

10 blah ^ "≤>" ^ regex ^ "|/"

11 | Tree (w, re, x::xs) →
12 let regex = RegExpSyntax.toString re in

13 let blah = String.concat "" (List.map (String.make 1) w) in

14 blah ^ "≤>" ^ regex ^ "|" ^ (self#printTree x) ^ "" ^ (self#

↪→ printTree (Tree ([], re, xs))) ^ "/"

Listing 6.7: Method to create the string that will result in the accept graphical tree

Once all the trees are generated the original method of the library is used to know

if the word is accepted or not. If so the result accepted is written in the right box and

the method in Listing 6.6 is called to regenerate the list with only the trees that give an

accepted result and return the first one (position was set to 0). With the methods position

77

CHAPTER 6. REGULAR EXPRESSIONS

and length we get the number of the tree that is represented in the page and the number

of trees that are going to be represented, and then put this information in the box. At

this point the buttons previous and next are also defined, and finally the graphical tree is

finally generated. If the word is not accepted everything is done in the same way except

for the list which is not separated with the method 6.6.

How is the tree generated? To generate the tree we apply the same logic used in the

creation of the RE syntax tree. A string representing a pre-order traversal is created and

passed to the JavaScript that breaks it into nodes and edges. But in the creation, we had

only symbols and now we have sentences. A new method represented in Listing 6.7 was

developed to create a string that allowed the JavaScript function to know were each node

ended, we decided to use a “|” to indicate that the node is finished and the its son should

be read and a “/” to indicate that there are no more sons at that level and a level should be

raised in the tree. This means that the JavaScript function reads first all the left sub-trees

and then when it reaches a “/” it starts from the bottom reading the right ones.

An example can be seen in Figure 6.2. Imagine that we are matching the word “ab”

with the Regular Expression “((a+b)*(cd)*)*”. To draw one of the accepted trees the

acceptRegularExpression function would give to JavaScript the string:

ab<=>((a+b)*(cd)*)*| a<=>(a+b)*(cd)*| a<=>(a+b)*| a<=>a+b| a<=>a|// ˜<=>(a+b)*|//
˜<=>(cd)*|// b<=>((a+b)*(cd)*)*| b<=>(a+b)*(cd)*| b<=>(a+b)*| b<=>a+b| b<=>b|//
˜<=>(a+b)*|//˜<=>(cd)*|//˜<=>((a+b)*(cd)*)*|///.

"ab<=>((a+b)*(cd)*)*”, the first node, indicates that we are matching “ab” to the com-

plete expression. The next step is to break the word into “a” and “b” and match “a” with

“(a+b)*(cd)*” and “b” with the complete RE. The sub-trees are separated with “/”. The

left side of the tree is “a<=>(a+b)*(cd)*| a<=>(a+b)*| a<=>a+b| a<=>a|// ˜<=>(a+b)*|//

˜<=>(cd)*|/” (Figure 6.6) and the right side the rest of the string (Figure 6.7).

Figure 6.6: Left sub-tree that matches “a” with “(a+b)*(cd)*”

To develop the left sub-tree (Figure 6.6) the RE is broken into two parts “(a+b)*” and

“(cd)*” where we match “a” with “(a+b)*” and “˜” to “(cd)*”. To match “a<=>(a+b)*”

(Figure 6.8) the law that indicates that “e* = ˜ + ee*” is used. Which means “(a+b)* = ˜ +

(a+b)(a+b)*”, since the union is ignored we obtain “a˜<=>(a+b)(a+b)*”. We get “a<=>a+b”

and “˜<=>(a+b)*”. This two are also divide by a “/”. The only thing missing is “a<=>a”

78

6.2. IMPLEMENTATION

Figure 6.7: Right sub-tree that matches “b” with “((a+b)*(cd)*)*”

Figure 6.8: Left sub-tree that matches “a” with “(a+b)*”

that is in it self a sub-tree of “a<=>a+b” (and for that reason follows it in the string

separated by “|”).

Figure 6.9: Sub-tree that matches “b” with “(a+b)*(cd)*”

The right sub-tree (Figure 6.7) to match “b<=>((a+b)*(cd)*)*” starts by using the

law previously mentioned where the word is partitioned into “b” + “˜” and matched

“b<=>(a+b)*(cd)*” (this generates another sub-tree that can be seen in Figure 6.9) and “˜”

to “((a+b)*(cd)*)*”. For the new sub-tree the word is yet again partitioned and so on.

This string parsed by the JavaScript that returns the tree represented in the referred

Figure 6.2 (in page 70).

An example of a tree of a word that fails to be match the RE can be seen in Figure

6.3. In it we are matching “ac” to the regular expression “((a+b)*(cd)*)*”. To show the

represented tree the acceptRegularExpression function would give to JavaScript the string:

ac<=>((a+b)*(cd)*)*| a<=>(a+b)*(cd)*| a<=>(a+b)*| a<=>a+b| a<=>a|// ˜<=>(a+b)*|//
<=>(cd)*|// c<=>((a+b)*(cd)*)*| c<=>(a+b)*(cd)*| ˜<=>(a+b)*|/ c<=>(cd)*| c<=>cd|
Fail|/ c<=>d| Fail|/// ˜<=>(cd)*|/// ˜<=>((a+b)*(cd)*)*|///

The first node indicates that we are matching “ac” to the complete regular expression,

79

CHAPTER 6. REGULAR EXPRESSIONS

“((a+b)*(cd)*)*”. The next step is to break the word into “a” and “c” and match “a” with

“(a+b)*(cd)*” (Figure 6.6) and “c” with the complete RE (Figure 6.10). The sub-trees are

separated with “/”.

The left tree is the same as in the previous example (Figure 6.6).

Figure 6.10: Right sub-tree that matches “c” with “((a+b)*(cd)*)*”

To try and match “c” the word is partitioned into “c” + “˜” (Figure 6.10). Using the

law previously mentioned, “c˜” is matched to “(a+b)*(cd)* ((a+b)*(cd)*)*” (Figure 6.11).

Figure 6.11: Sub-tree that matches “c” with “((a+b)*)(cd)*”

We keep partitioning “c”, first into “˜” + “c” to match “(a+b)*” and “(cd)*” respectively

and then as “c” + “˜” to match “cd” and “(cd)*”. In the last sub-tree, “c<=>cd” (Figure

6.12) we partition the word into “˜” + “c” and we match “˜” to “c” which fails and “c” to

d” that also fails. Since “cd” is a concatenation it was necessary to have the two symbols.

For that reason even if we matched “c” to “c”, when we did “˜<=>d” it would also fail.

This string parsed by the JavaScript that returns the tree represented in the referred

Figure 6.3 (in page 71).

When clicking the button “next” the correspondent method is called, the variable

position is increased and the correspondent tree in the list allTrees is return and then

printed in the screen using the process explained before. The same happens when the

button “previous”is clicked but the variable position is decreased. All the values of the

box are updated in the same way they were in the first generation.

80

6.2. IMPLEMENTATION

Figure 6.12: Sub-tree that matches “c” with “cd”

6.2.5 Generate

Since this functionality works exactly like the automaton one, the only difference is that

the library method from that is accessed to retrieve the words is part of the Regular

Expression module, it won’t be reexplained in this chapter.

6.2.6 Convert

1 let fromExpressionToAutomaton () =

2 if StateVariables.getCy1Type() = StateVariables.getAutomatonType() then

3 JS.alert ("Já está a trabalhar com um autómato finito")

4 else

5 (HtmlPageClient.twoBoxes ();

6 HtmlPageClient.clearBox2();

7 StateVariables.changeCy2ToAutomaton ();

8 HtmlPageClient.putCy2Buttons ();

9 Graphics.startGraph1();

10 Graphics.fit();

11 let auto = (StateVariables.returnRe())#toFiniteAutomaton in

12 let maton = auto#representation in

13 StateVariables.changeAutomata1 (new FiniteAutomatonAnimation.model (

↪→ Representation (maton)));

14 (StateVariables.returnAutomata1())#drawExample1)

Listing 6.8: Functions to generate an Automaton from the Regular Expression

The method used to convert the Regular expression to an Automaton can be seen in

Listing 6.8. Following the logic of the other convert method, when fromExpressionToAu-
tomaton is called it verifies if the mechanism represented is a regular expression (Lines

2 to 2). If not, it alerts the user. If so, it starts by preparing the two boxes (Lines 5 a 10),

then it generates a new automaton by accessing the library method toFiniteAutomaton
(Line 11) and afterwards transforms it in a FiniteAutomatonAnimation representation so

that it can use the animation methods and stores it in the respective representation vari-

able (Lines 12 to 13). Finally, it draws the automaton in the right box using the method

drawExample1 (Line 14) explained previously.

81

CHAPTER 6. REGULAR EXPRESSIONS

In this chapter we have explained the Regular Expression and its functionalities. At

this point the two main mechanisms are explained, these two give the student some

autonomy to work and experiment at his own pace but it is also important to be able

to solve exercises. The next chapter presents the last mechanism that allows the user to

solve simple exercises in which he is asked to define a language through an automaton or

a regular expression.

82

C
h
a
p
t
e
r

7
Exercises

In addition to working with Automata and Regular Expressions there is a possibility of

solving exercises. In this chapter we explain what they are and how they work.

In Section 7.1 we start by explaining how Exercises are displayed, and why. We

shed a light on how the user can answer the exercises and explain how the feedback is

represented on the screen.

After the analysis of the graphical representation, in Section 7.2 we explain how this

mechanism was implemented.

7.1 Functionality and its representation

Figure 7.1: Representation of an Exercise

83

CHAPTER 7. EXERCISES

An “exercise” corresponds to the statement of a problem where the user is asked to

define a language by means of a finite automaton or a regular expression. The statement

is accompanied by a set of unit tests that are used to verify the solution. An example of

an exercise will be given in Figure 7.1.

As can be seen in Figure 7.1 the exercise is presented to the user in the box on the

right. This is the result of a technical decision, made for two reasons: the code was already

prepared to always import automata and regular expressions for the box on the left and

for that same reason, the user is already accustomed to work with the mechanisms on

that box.

When the user imports an exercise, what is shown to him is the description of the

problem and a list of words that should be accepted by the created mechanism and a list

of words that should not. This can help the user not only understand which words are

going to be used to test the solution, but also where the solution is failing (or not).

Once the exercise is loaded, in order to solve it, the user can import or generate an

example as he would do if he was working with an Automaton or Regular Expression.

When the exercise is ready to be checked, the user can click the button verify. Under the

description of the problem appears the result (no mater if the solution is correct or not)

painted in green if it is right and in red if it is not. The same happens with the set of unit

tests, each word is painted in green if it fulfills their function, or in red if not. In this

way the user may easily identify why the exercise is correct or not. Two examples of a

verification of the exercises can be seen in Figure 7.2.

(a) Example of an accepted resolution (b) Example of wrong resolution

Figure 7.2: Example of the correction of an Exercise

7.2 Implementation

Now that the reader understands how the exercises are represented and how they work

we will explain how they are implemented.

First we explain how they are represented in OCaml and the information necessary

on the file to be imported from the filesystem and then we define how this mechanism is

implemented.

84

7.2. IMPLEMENTATION

In terms of OCaml the exercise represented on the screen is saved in the enum variable

stored on the StateVariables module. This variable works as a handler to the Enumeration
module and its definition consists of:

• problem - a string that corresponds to the statement

• inside - a set with words to be accepted by the solution

• outside - a set with words that cannot be accepted by the solution

Much like the Automata and the Regular Expressions, exercises can be imported

through the local filesystem as well as from the server, in JSon or txt and its format

follows the ones from the previous mechanism as seen in Listing 7.1. In this case there is

no other way to generate the exercises.

1 {

2 kind : "enumeration",

3 description : "this is an example",

4 name : "a&b",

5 problem : "Converta a expressão regular (a+b)*(c+d) em Autómato Finito.",

6 inside : ["abc","c","ab","b","abac"],

7 outside : ["","aba","bab","abba","baab","abcd"]

8 }

Listing 7.1: Example of a file with the representation of an exercise

The kind, description and name fields have the same functions as the ones in the Au-

tomata and Regular Expressions. The problem (Line 5) is the description of the exercise,

the inside (Line6) is a list of words that must be accepted and the outside (Line 7) is a list

of words that should not be accepted.

In the future we would like to add a new field to the definition that identifies which

mechanism is supposed to be added as an answer. Hence, the user is driven to answer

with the right mechanism.

How do the exercises work? The code seen in Listing 7.2 is the controller function

defined to create the enumeration, it first defines the two system variables (Lines 2 and 3),

one is used for the other mechanisms to know that they should maintain the two boxes

on the screen (when we start to create an answer to the exercise, we want to keep seeing

the problem), the other is used to store the exercise defined in the page and use it to

evaluate the solution. After the variables are set, the box is created (Lines 4, and 5) and

the information is placed on it through HtmlPageClient functions (Lines 6 to 17). These

functions using Tyxml library create HTML elements with the necessary information on

it and places those in the right place of the page.

One example of the HtmlPageClient functions is in Listing 7.3. This function puts the

definition of the problem on the page. Using the Js_of_ocaml module Dom_html starts by

getting the element where the problem is going to be put in on the page (Line 5), then

85

CHAPTER 7. EXERCISES

1 let defineEnum e =

2 StateVariables.changeEnum e;

3 StateVariables.changeCy2ToEnumeration ();

4 HtmlPageClient.twoBoxes ();

5 HtmlPageClient.putEnumButton ();

6 HtmlPageClient.addEnumTitle();

7 let prob = (StateVariables.returnEnum())#representation.problem in

8 HtmlPageClient.defineEnumProblem prob;

9 HtmlPageClient.addAcceptedTitle ();

10 Set.iter (fun el →
11 HtmlPageClient.createSpanList el "nothing" "inside")

12 (StateVariables.returnEnum())#representation.inside;

13 HtmlPageClient.addNonAcceptTitle ();

14 Set.iter (fun el →
15 HtmlPageClient.createSpanList el "nothing" "outside")

16 (StateVariables.returnEnum())#representation.outside;

17 HtmlPageClient.addEnumCheckButton ()

Listing 7.2: Controller method that organizes the Exercise rendering

1 let defineEnumProblem prob =

2 let textBox = Dom_html.getElementById "textBox" in

3 let test = "Problema: " ^ prob in

4 let en =

5 Eliom_content.Html.To_dom.of_div (div ~a: [a_id "prob"][txt test])

6 in

7 Js_of_ocaml.Dom.appendChild textBox en;

8 let resultBox =

9 Eliom_content.Html.To_dom.of_div (div ~a: [a_id "resultBox"][txt

↪→ ""])

10 Eliom_content.Html.To_dom.of_div (div ~a: [a_id "resultBox"][txt ""])

11 in

12 Js_of_ocaml.Dom.appendChild textBox resultBox

Listing 7.3: HtmlPageClient function to display the exercise on the screen

it creates the HTML element div (that represents a division on a page, a box) with the

definition of the problem on it (Line 7.3). In the end with the function appendChild from

Js_of_ocaml the new HTML element is added to the parent one (Line 7). The rest of the

method is exactly the same and is used to create the box where the evaluation is going to

be given, once the exercise is checked.

When the verification button is clicked the function checkHelper (Listing 7.4) is called

with the solution proposed by the user (displayed on the left box). checkHelper first

accesses the library to evaluate the answer (Line 2) and this is going to be a boolean result

which is going to be used to define the information on the HTML box that contains the

result (Line 3). Then it accesses the library to get the wrong results from the unit tests

(Line 5). This is going to be a tuple, with two sets: the set of the ones that were not

accepted and should have been and the set of the ones that where accepted and should

not have been. Then each set is compared with the inside and outside list, respectively.

86

7.2. IMPLEMENTATION

Each word is put on an HTML element (with the function createSpanList) identified with

the id wrong or right (Lines 6 to 17). The same identifier is used for the box with the

result. Why? Each identifier, right or wrong, corresponds to a CSS style that paints the

text, in green or red, respectively.

1 let checkHelper isWhat =

2 let result = isWhat#checkEnumeration (StateVariables.returnEnum()) in

3 HtmlPageClient.defineResult result;

4 let (insideErrors, outsideErrors) =

5 isWhat#checkEnumerationFailures (StateVariables.returnEnum()) in

6 Set.iter (fun el →
7 if Set.belongs el insideErrors then

8 HtmlPageClient.createSpanList el "error" "inside"

9 else

10 HtmlPageClient.createSpanList el "right" "inside"

11 (StateVariables.returnEnum())#representation.inside;

12 Set.iter (fun el →
13 if Set.belongs el outsideErrors then

14 HtmlPageClient.createSpanList el "error" "outside"

15 else

16 HtmlPageClient.createSpanList el "right" "outside")

17 (StateVariables.returnEnum())#representation.outside

Listing 7.4: Method that organizes the presentation of the Exercise result

In this chapter the last available mechanism, Exercises, was explained. At this point

we have already explained the context in which the application emerged, its design and

organization and the mechanisms and functionalities already available to use. It is now

time to explain how everything was tested and how we made sure it was ready to use.

87

C
h
a
p
t
e
r

8
Testing

All along the development of this project, after each mechanism was finished each func-

tionality was tested for correctness. In Section 8.1 we explain the testing process.

Our application is being used in the current edition of the Theory of Computation

course at FCT/UNL and we decided to take advantage of this usage to make a large

usability testing experiment. Prior to this, we also did an experimentation session with a

group of more than ten people, including all the teachers of the said course. In Section

8.2 we explain the results found in that session, which was changed in the application

afterwards and which is going to be change further in the future. Finally, we explain how

we are going to benefit from the usage of the application in class.

8.1 Program Tests

The application is divided in two major components, the underlying library and the

graphical implementation. Before being used as a base for the graphical implementation

each mechanism presented in the library has undergone a big set of tests that are still

available in the library code.

To test the web page we resorted to black-box testing in which we extensively tested

each one of the mechanisms and functionalities with different examples. First, we have

tested the creation of the mechanisms by verifying if the result represented on the screen

matched to the downloaded ones or if the input had errors to which the user was alerted.

The library’s error system was helpful in the verification of the mechanism’s creation by

identifying the errors that occurred when downloading a file and in understanding if the

file had errors or if the system was not reading it correctly.

After the creation of the mechanism was corrected while developing each function-

ality, different kinds of inputs were tested to make sure that the displayed results were

89

CHAPTER 8. TESTING

the expected ones and that the user was alerted when necessary. Each functionality was

tested with different types of examples, most of which may now be imported from the

server, and for the ones that depend on input, the correct, incorrect and invalid ones were

tested for each example.

The tests that were provided by the library were also used throughout the creation

of the web component, not only to understand how to use the mechanisms and func-

tionalities before animating them but also to compare results and understand where the

graphical representation was failing.

The exercises are also useful to verify the accept functionality of the different mecha-

nisms, since these returns the words that should be accepted and those that should not

be, therefore we can test the accept functionality with the given words and compare the

results.

1 (** Can be "finite automaton", "regular expression" or "clean" **)

2 let cyType = ref "clean"

3

4 let changeCy1ToAutomaton () =

5 cyType := "finite automaton"

6

7 let changeCy1ToRegex () =

8 cyType := "regular expression"

9

10 let cleanCy1Type () =

11 cyType := "clean"

12

13 let getCy1Type() =

14 !cyType

Listing 8.1: CyType variable and its respective functions

It is also important to refer that the system architecture was used to maintain a correct

usage of the code and safeguard against any change of the system. The variables that

represent the pages are stored in a module and they can only be changed with specific

functions, to specific values. For example, the variable that represents that main box

is called cyType (listing 8.1 line 2), and can only receive three values: finite automaton,

regular expression and clean. To make sure no other value is given to this variable there

are three functions to change to those three specific values (Lines 7 to 11), hence the

controller never accesses the variable directly, but only through the setter functions. The

same happens when reading the variable, as there is a function that returns the value of

the variable (Line 13). This happens with all the other state variables.

8.2 User Tests

As previously explained to make sure that we had the most complete application possible

for the use in class we have decided to keep developing the application and, for the time

90

8.2. USER TESTS

being, not spend too much time preparing a very complete user testing evaluation.

For the moment we did an experimentation session with a group of 16 people, some

experts in the field and others not so much, but all from Computer Science. This session

proved to be very helpful in terms of feedback such as usability suggestions. Besides,

the session helped us to find two different types of problems: bugs in the system and

usability problems.

The bugs in the system came with last minute changes in the code, since at the time

the application was still on a finishing stage and all of those bugs where corrected:

• Alert box in the Automata Accept - there was an error in the accept method of the

Automata that made an alert box appear in each step, even though the automaton

was being correctly painted. The error was related with the verification of the

alphabet.

• Buttons missing - in some functionalities, like the step-by-step creation of an au-

tomaton, the buttons were not appearing in the box.

• Selection of the node - when trying to select a node, there was a problem with

click offset. Whenever the user clicked a position it was as if the user had clicked

a different one. This arose from an incompatibility with the cytoscape.js library to

draw a graph in the same division where other elements were represented. The

problem was solved with the usage of different divisions.

• Step by step accept buttons enabled for the Regular Expression - these buttons

were meant to be used with the automata. If used with the Regular Expression they

would not create the desired effect and would change the format of the derivation

tree, which was not the purpose. This problem was solved by the disabling the

buttons when a regular expression is represented.

The usability problems were related to the fact that some of the usage of the page

was not as easy as initially thought. Some users had difficulties finding the input box,

and some of the buttons were not readable because of the text color. These two problems

were solved by identifying the input box and changing the text color. As for the bigger

problems are not yet completely solved:

• When to input text before clicking the button - some users did not understand

when there was a need to input text before clicking the button. For now this problem

has been addressed with an alert box that indicates the necessary information and

format. For the future, we have planned to test a more guided use of the tool (based

on one of the suggestions).

• How to start working with the new generated automaton - a few functionalities,

as explained in the previous chapters, generate a new automaton in a new box. If

the user clicks on the close button on the left box, the automaton generated on the

91

CHAPTER 8. TESTING

right becomes the main automaton. This mechanism not understood by all. A few

solutions are still being evaluated to solve this problem.

At the end of the session we were able to understand which were the hardest parts in

the usage of the application to create an instructions page in order to help guide the user

if needed. There were also several ideas for new features that could facilitate the use and

understanding of the page and mechanisms.

From the beginning of March until the end of the semester we plan to have the appli-

cation go through a very broad testing system since the application is meant to be used

in the Theory of Computation course. While writing of this dissertation, the application

was presented and experimented in a theoretical class and more than 300 students were

encouraged to experiment and use it as a learning mechanism throughout the semester

and to share afterwards any doubts and suggestions through the feedback page of the ap-

plication. This will help us to better understand where the greatest number of difficulties

lie so that we can further improve the application.

We can say that through different types of tests and an experimentation session, we

have made sure that the application was as better as it could be in order to be used in class,

but we acknowledge that, upon its usage in class, we shall have a better understanding of

what may be more suitable for a student who is dealing with this type of subjects for the

first time.

92

C
h
a
p
t
e
r

9
Conclusions and Future Work

This chapter presents the main conclusions and the future work that is intended for the

application.

9.1 Conclusions

In this project we proposed to develop a Web application in Portuguese written in OCaml
that allowing the students to study different topics of Formal Languages and Automata

Theory. To do so, we started by understanding the Ocsigen Framework. Due to the

difficulties arisen while studying this tool (as explained in Appendix A) the learning curve

became steeper than expected but the obstacles have been overcome and we were able to

take advantage of the tool’s potential and create a web application already prepared to

be used in class.

Although a JavaScript library was used to display the graphs, we have achieved the

proof of concept by showing that it is possible to create a web page almost completely

in OCaml. We were able to have a complete interaction with the support library - which

by being written in OCaml facilitates the correction proofs and keeps the algorithms

as similar as the ones given in class -, and to maintain all the core programming, like

decisions and verifications, in the OCaml side of the code, using the cytoscape.js library

only to show what in OCaml is decided to be shown.

Despite the fact that the application does not cover all the mechanisms taught in the

course of Theory of Computation, we have built a version of the application which is

finalized and ready to be used in class by doing a wide coverage of a few mechanisms, i.e.

having the all the functionalities for each mechanism even if it meant not having all of

them fully animated.

93

CHAPTER 9. CONCLUSIONS AND FUTURE WORK

In the, end we obtained a robust, structured and extensible application, with a cen-

tralized client-server code, that is prepared to receive different types of mechanisms and

that already allows for the study of Finite Automata and Regular Expression as well as

enables the performing of simple exercises.

9.2 Future Work

Considering the broad objective of this application, even though we have paved the way

to create a complete tool, there is still much work to be done. We intend to further develop

the application and make it increasingly usable and complete.

Firstly, we would like to make some changes related to the interface and the sugges-

tions presented at the testing session. We expect to test different ways of show the user

that there is an input which is necessary and to better explain how to use the mechanism

generated in the right box. We also intend to add a few functionalities that are not directly

related to the algorithms given in class but were suggested and can facilitate the use of

the page.

Secondly, we also aim to make an in-depth coverage of the functionalities already

presented, trying to find the best way to show some of those, without departing too much

from the algorithms given in class.

Lastly, there are still other mechanisms in Formal Languages and Automata Theory

that we intend to add to the application, starting with Context Free Grammars and going

further towards the Turing Machines.

9.3 Final Remark

Ultimately, we believe that the objectives we set ourselves for this thesis were fulfilled

since 1/3 of the topics covered in the course of Computational Theory were developed

and the system is prepared to be extended with many more.

We trust that a relevant contribution was given to the FACTOR project in the sense

the tool is already useful and is prepared to be enhanced and completed.

94

Bibliography

[1] 10 Common Software Architectural Patterns in a nutshell. https://towardsdatascience.
com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013.

Accessed: 2020-03-09.

[2] E. Adar. “GUESS: A language and interface for graph exploration.” In: CHI ’06:
Proceedings of the SIGCHI conference on Human Factors in computing systems. Vol. 2.

Jan. 2006, pp. 791–800. doi: 10.1145/1124772.1124889.

[3] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers: Principles, Techniques, and Tools.
Addison-Wesley series in computer science / World student series edition. Addison-

Wesley, 1986. isbn: 0-201-10088-6.

[4] Automata Tutor v2.0. http://automatatutor.com/index. Accessed: 2019-02-11.

[5] AutoMate. https://idea.nguyen.vg/~leon/automata_experiments/index.

html. Accessed: 2019-02-11.

[6] Automaton Simulator. http://automatonsimulator.com/. Accessed: 2019-02-11.

[7] Awali. http://vaucanson-project.org/Awali/index.html. Accessed: 2019-07-

09.

[8] V. Balat. “Ocsigen: Typing Web Interaction with Objective Caml.” In: Proceedings
of the ACM SIGPLAN 2006 Workshop on ML (Sept. 2006), pp. 84–94. doi: 10.1145/

1159876.1159889.

[9] V. Balat, J. Vouillon, and B. Yakobowski. “Experience Report: Ocsigen, a Web

Programming Framework.” In: Proceedings of the ACM SIGPLAN International
Conference on Functional Programming, ICFP 44 (Sept. 2009), pp. 311–316. doi:

10.1145/1596550.1596595.

[10] C. W. Brown and E. A. Hardisty. “RegeXeX: An Interactive System Providing

Regular Expression Exercises.” In: Proceedings of the 38th SIGCSE Technical Sym-
posium on Computer Science Education. SIGCSE ’07. Covington, Kentucky, USA:

Association for Computing Machinery, 2007, 445–449. isbn: 1595933611. doi:

10.1145/1227310.1227462. url: https://doi.org/10.1145/1227310.1227462.

[11] P. Chakraborty, P C. Saxena, and C. Katti. “Fifty years of automata simulation: A

review.” In: ACM Inroads 2 (Dec. 2011). doi: 10.1145/2038876.2038893.

95

https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://towardsdatascience.com/10-common-software-architectural-patterns-in-a-nutshell-a0b47a1e9013
https://doi.org/10.1145/1124772.1124889
http://automatatutor.com/index
https://idea.nguyen.vg/~leon/automata_experiments/index.html
https://idea.nguyen.vg/~leon/automata_experiments/index.html
http://automatonsimulator.com/
http://vaucanson-project.org/Awali/index.html
https://doi.org/10.1145/1159876.1159889
https://doi.org/10.1145/1159876.1159889
https://doi.org/10.1145/1596550.1596595
https://doi.org/10.1145/1227310.1227462
https://doi.org/10.1145/1227310.1227462
https://doi.org/10.1145/2038876.2038893

BIBLIOGRAPHY

[12] T. Claveirole, S. Lombardy, S. O’Connor, L.-N. Pouchet, and J. Sakarovitch. “Inside

Vaucanson.” In: Proceedings of Implementation and Application of Automata, 10th
International Conference (CIAA). Ed. by Springer-Verlag. Vol. 3845. Lecture Notes

in Computer Science Series. Sophia Antipolis, France, June 2005, pp. 117–128.

[13] R. W. Coffin, H. E. Goheen, and W. R. Stahl. “Simulation of a Turing Machine on a

Digital Computer.” In: Proceedings of the November 12-14, 1963, Fall Joint Computer
Conference. AFIPS ’63 (Fall). Las Vegas, Nevada: ACM, 1963, pp. 35–43. doi: 10.

1145/1463822.1463827. url: http://doi.acm.org/10.1145/1463822.1463827.

[14] J. Cogliati, F. W. Goosey, M. T. Grinder, B. A. Pascoe, R. Ross, and C. J. Williams.

“Realizing the Promise of Visualization in the Theory of Computing.” In: ACM
Journal of Educational Resources in Computing 5 (June 2005), pp. 1–17. doi: 10.

1145/1141904.1141909.

[15] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. “Links: Web Programming without

Tiers.” In: Proceedings of the 5th International Conference on Formal Methods for
Components and Objects. FMCO’06. Amsterdam, The Netherlands: Springer-Verlag,

2006, 266–296. isbn: 3540747915.

[16] Cytoscape.js. http://js.cytoscape.org/. Accessed: 2019-06-04.

[17] L. D’antoni, D. Kini, R. Alur, S. Gulwani, M. Viswanathan, and B. Hartmann. “How

Can Automatic Feedback Help Students Construct Automata?” In: ACM Trans.
Comput.-Hum. Interact. 22.2 (2015), 9:1–9:24. issn: 1073-0516. doi: 10.1145/

2723163. url: http://doi.acm.org/10.1145/2723163.

[18] L. D’Antoni, M. Weaver, A. Weinert, and R. Alur. “Automata Tutor and what

we learned from building an online teaching tool.” In: Bulletin of the European
Association for Computer Science 117 (2015), pp. 143–160.

[19] A. Demaille, A. Duret-Lutz, S. Lombardy, and J. Sakarovitch. “Implementation

Concepts in Vaucanson 2.” In: Proceedings of Implementation and Application of Au-
tomata, 18th International Conference (CIAA’13). Ed. by S. Konstantinidis. Vol. 7982.

Lecture Notes in Computer Science. Halifax, NS, Canada: Springer, July 2013,

pp. 122–133. isbn: 978-3-642-39274-0. doi: 10.1007/978-3-642-39274-0_12.

[20] FAdo. http://fado.dcc.fc.up.pt/. Accessed: 2020-03-09.

[21] FSM simulator. http://ivanzuzak.info/noam/webapps/fsm_simulator/. Ac-

cessed: 2019-02-11.

[22] FSM2Regex. http://ivanzuzak.info/noam/webapps/fsm2regex/. Accessed:

2019-02-14.

[23] JFLAP. http://www.jflap.org/. Accessed: 2019-02-11.

[24] JFLAP History. http://www.jflap.org/history.html. Accessed: 2019-02-17.

[25] JFLAP History PowerPoint. https://www2.cs.duke.edu/csed/jflapworkshop/
sigcse06/WorkshopHistory.pdf. Accessed: 2019-02-17.

96

https://doi.org/10.1145/1463822.1463827
https://doi.org/10.1145/1463822.1463827
http://doi.acm.org/10.1145/1463822.1463827
https://doi.org/10.1145/1141904.1141909
https://doi.org/10.1145/1141904.1141909
http://js.cytoscape.org/
https://doi.org/10.1145/2723163
https://doi.org/10.1145/2723163
http://doi.acm.org/10.1145/2723163
https://doi.org/10.1007/978-3-642-39274-0_12
http://fado.dcc.fc.up.pt/
http://ivanzuzak.info/noam/webapps/fsm_simulator/
http://ivanzuzak.info/noam/webapps/fsm2regex/
http://www.jflap.org/
http://www.jflap.org/history.html
https://www2.cs.duke.edu/csed/jflapworkshop/sigcse06/WorkshopHistory.pdf
https://www2.cs.duke.edu/csed/jflapworkshop/sigcse06/WorkshopHistory.pdf

BIBLIOGRAPHY

[26] J. D. U. John E. Hopcroft Rajeev Motwani. Introduction to Automata Theory, Lan-
guages, and Computation, 2nd Edition. Addison-Wesley, 2001.

[27] G. Krasner and S. Pope. “A cookbook for using the model - view controller user

interface paradigm in Smalltalk - 80.” In: Journal of Object-oriented Programming -
JOOP 1 (Jan. 1998).

[28] S. Krug. Don’t Make Me Think: A Common Sense Approach to the Web (3nd Edition).
USA: New Riders Publishing, 2014. isbn: 0-321-96551-5.

[29] Learn OCaml. http://learn-ocaml.hackojo.org/. Accessed: 2019-07-15.

[30] H. R. Lewis and C. H. Papadimitriou. Elements of the theory of computation, 2nd
Edition. Prentice Hall, 1998. isbn: 978-0-13-262478-7.

[31] S. Lombardy, R. Poss, Y. Régis-Gianas, and J. Sakarovitch. “Introducing Vaucan-

son.” In: Proceedings of the 8th international conference on Implementation and ap-
plication of automata. Vol. 2759. June 2003, pp. 107–134. doi: 10.1007/3-540-

45089-0_10.

[32] T. M. White and T. Way. “jFAST: a java finite automata simulator.” In: ACM SIGCSE
Bulletin 38 (Mar. 2006), pp. 384–388. doi: 10.1145/1124706.1121460.

[33] A. Merceron and K. Yacef. “Web-based learning tools: storing usage data makes

a difference.” In: WBED’07 - Proceedings of the sixth conference on IASTED Interna-
tional Conference Web-Based Education. Vol. 2. Mar. 2007, pp. 104–109.

[34] Ocsigen - Multi-tier programming for Web and mobile apps. https://ocsigen.org/
home/intro.html. Accessed: 2019-02-11.

[35] W. C. Pierson and S. H. Rodger. “Web-based Animation of Data Structures Using

JAWAA.” In: SIGCSE Bull. 30.1 (Mar. 1998), pp. 267–271. issn: 0097-8418. doi:

10.1145/274790.274310. url: http://doi.acm.org/10.1145/274790.274310.

[36] N Pillay. “Learning difficulties experienced by students in a course on formal

languages and automata theory.” In: SIGCSE Bulletin 41 (Jan. 2009), pp. 48–52.

doi: 10.1145/1709424.1709444.

[37] G. Radanne, J. Vouillon, and V. Balat. “Eliom: A Core ML Language for Tierless

Web Programming.” In: Asian Symposium on Programming Languages and Systems
(Nov. 2016), pp. 377–397. doi: 10.1007/978-3-319-47958-3_20.

[38] A. Ravara. Lecture notes in Computational Theory. The notes are currently unavail-

able to the general public, only for students with authentication. 2019.

[39] D. Raymond and D. Wood. “Grail: A C++ Library for Automata and Expressions.”

In: J. Symb. Comput. 17.4 (Apr. 1994), pp. 341–350. issn: 0747-7171. doi: 10.

1006/jsco.1994.1023. url: http://dx.doi.org/10.1006/jsco.1994.1023.

[40] Regular Expressions Gym. http : / / ivanzuzak . info / noam / webapps / regex _

simplifier/. Accessed: 2019-02-14.

97

http://learn-ocaml.hackojo.org/
https://doi.org/10.1007/3-540-45089-0_10
https://doi.org/10.1007/3-540-45089-0_10
https://doi.org/10.1145/1124706.1121460
https://ocsigen.org/home/intro.html
https://ocsigen.org/home/intro.html
https://doi.org/10.1145/274790.274310
http://doi.acm.org/10.1145/274790.274310
https://doi.org/10.1145/1709424.1709444
https://doi.org/10.1007/978-3-319-47958-3_20
https://doi.org/10.1006/jsco.1994.1023
https://doi.org/10.1006/jsco.1994.1023
http://dx.doi.org/10.1006/jsco.1994.1023
http://ivanzuzak.info/noam/webapps/regex_simplifier/
http://ivanzuzak.info/noam/webapps/regex_simplifier/

BIBLIOGRAPHY

[41] S. Rodger. “An Interactive Lecture Approach to Teaching Computer Science.” In:

ACM SIGCSE Bulletin 27 (Mar. 1995). doi: 10.1145/199691.199820.

[42] S. Rodger, E. Wiebe, K. Min Lee, C. Morgan, K. Omar, and J. Su. “Increasing

engagement in automata theory with JFLAP.” In: SIGCSE’09 - Proceedings of the
40th ACM Technical Symposium on Computer Science Education. Vol. 41. Mar. 2009,

pp. 403–407. doi: 10.1145/1508865.1509011.

[43] I. Sanders, C. Pilkington, and W. Van Staden. “Errors made by students when

designing Finite Automata.” In: SACLA’15, Johannesburg, South Africa. July 2015.

[44] M. Sipser. Introduction to the theory of computation. PWS Publishing Company,

1997. isbn: 978-0-534-94728-6.

[45] I. Sommerville. Software Engineering. 10th. London: Pearson Education, 2016.

isbn: 1-292-09613-6.

[46] J. T. Stasko. “Tango: A Framework and System for Algorithm Animation.” In:

SIGCHI Bull. 21.3 (Jan. 1990), pp. 59–60. issn: 0736-6906. doi: 10.1145/379088.

1046618. url: http://doi.acm.org/10.1145/379088.1046618.

[47] A. Stoughton. “Experimenting with formal languages using forlan.” In: FDPE
’08: Proceedings of the 2008 international workshop on Functional and declarative
programming in education. Jan. 2008. doi: 10.1145/1411260.1411267.

[48] M. T. Grinder. “A preliminary empirical evaluation of the effectiveness of a finite

state automaton animator.” In: ACM Sigcse Bulletin. Vol. 35. Jan. 2003, pp. 157–161.

doi: 10.1145/611892.611958.

[49] A. R. V. M. T. Teixeira. “A cor enquanto elemento do projecto no design de produto.”

Master’s thesis. Portugal: Faculdade de Belas Artes da Universidade de Lisboa,

2015. url: http://hdl.handle.net/10451/22246.

[50] The Links Programming Language. https://links-lang.org/. Accessed: 2020-03-

09.

[51] L. Vieira, M. Vieira, and N. Vieira. “Language emulator, a helpful toolkit in the

learning process of computer theory.” In: ACM Sigcse Bulletin. Vol. 36. Mar. 2004,

pp. 135–139. doi: 10.1145/971300.971348.

[52] VisuAlgo. https://visualgo.net/en. Accessed: 2019-02-11.

[53] J. Vouillon and V. Balat. “From Bytecode to JavaScript: the Js_of_ocaml Compiler.”

Anglais. In: Software: Practice and Experience (2013). doi: 10.1002/spe.2187.

[54] S. Weinschenk. 100 Things Every Designer Needs to Know About People. 1st. USA:

New Riders Publishing, 2011. isbn: 0321767535.

[55] M. Wermelinger and A. Dias. “A Prolog toolkit for formal languages and automata.”

In: ACM SIGCSE Bulletin 37 (Sept. 2005). doi: 10.1145/1067445.1067536.

98

https://doi.org/10.1145/199691.199820
https://doi.org/10.1145/1508865.1509011
https://doi.org/10.1145/379088.1046618
https://doi.org/10.1145/379088.1046618
http://doi.acm.org/10.1145/379088.1046618
https://doi.org/10.1145/1411260.1411267
https://doi.org/10.1145/611892.611958
http://hdl.handle.net/10451/22246
https://links-lang.org/
https://doi.org/10.1145/971300.971348
https://visualgo.net/en
https://doi.org/10.1002/spe.2187
https://doi.org/10.1145/1067445.1067536

A
p
p
e
n
d
i
x

A
Problems in this version of Ocsigen

Throughout the Framework’s learning process and the development of the first applica-

tion example, some problems arose that were somehow overcome. Here is a summary of

those:

• Change in the fundamentals ofOCaml - the base language syntax has been changed,

the syntax camlp4 has been discontinued to make way for ppx. This change implied

the alteration of most applications written in OCaml, as is the case of Ocsigen. Prob-

ably, due to this change, some of the few basic examples of learning the framework
are now discontinued and with errors.

• Moving from Ocsigen-Widgets to Ocsigen-Toolkit - several of the examples pro-

posed on the web page assume the use of the Ocsigen-Widgets library which has

been discontinued and replaced by Ocsigen-Toolkit. The problem with this change

is that Ocsigen-Widgets was already a very complete and developed library, which

Ocsigen-Toolkit does not yet correspond to. Thus, it is not possible to finish the

learning examples simply by replacing the library.

• API is difficult to understand - for a tool as complete as Ocsigen, the documentation

is too synthetic and non-educational, which causes to the user who takes the first

steps in using Ocsigen, the need to spend a lot of time understanding the tool. It has,

indeed, a very complete API, but this one, for lack of explanations and examples, is

not easy to understand.

• Few examples - for such a complete tool, it contains very few learning examples

on which an inexperienced user can rely in order to learn how to work with the

framework.

99

APPENDIX A. PROBLEMS IN THIS VERSION OF OCSIGEN

• Difficulties in the use of Ocsigen-Start - on the web page, the user is advised to use

the Ocsigen-Start template as a starting point but, in fact, the use of Ocsigen-Start
as a basis for learning is not easy. Despite being a very complete template, for a

beginner programmer it is not obvious how to adapt and use it.

100

	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction
	Context and Motivation
	Objectives
	Contributions
	Document Organization

	Related Work
	FLAT Libraries
	Awali
	FAdo

	FLAT Visualization tools
	JFlap
	Automaton Simulator
	FSM simulator, Regular Expressions Gym, FSM2Regex
	Automata Tutor v2.0
	AutoMate

	Development Tools
	Ocsigen Framework
	Component Description
	Usage

	Cytoscape.js Library
	Usage

	Page Architecture
	Page Design
	Architectural Pattern
	Model
	View
	Controller

	Generating the page and importing files
	Generating the page
	Importing

	MVC by Example

	Finite Automata
	Functionalities and its presentation
	Automata representation
	Accept
	Type of states
	Generation
	Convert to Deterministic
	Minimize
	Clean the Useless States
	Convert

	Implementation
	Definition of the Automaton
	Load file
	Creation
	Eliminating a state
	Creating a transition
	Eliminating a transition
	Accept
	Type of the states
	Generate
	Convert to deterministic
	Minimize
	Clean useless states
	Convert

	Regular Expressions
	Functionalities and its presentation
	Regular Expression Representation
	Accept
	Generate
	Convert

	Implementation
	Definition of the Regular Expression
	Load file
	Creation
	Accept
	Generate
	Convert

	Exercises
	Functionality and its representation
	Implementation

	Testing
	Program Tests
	User Tests

	Conclusions and Future Work
	Conclusions
	Future Work
	Final Remark

	Bibliography
	Appendices
	Problems in this version of Ocsigen

