
Pedro Miguel Laforêt Barroso

Bachelor Degree

Formally Verified Bug-free Implementations
of (Logical) Algorithms

Dissertation submitted in partial fulfillment
of the requirements for the degree of

Master of Science in
Computer Science and Engineering

Adviser: António Maria Lobo César Alarcão Ravara,
Associate Professor,
Faculdade de Ciências e Tecnologia da Universidade
Nova de Lisboa

Co-adviser: Mário José Parreira Pereira,
Post-Doctoral Researcher,
Faculdade de Ciências e Tecnologia da Universidade
Nova de Lisboa

Examination Committee

Chairperson: José Júlio Alves Alferes
Raporteur: Nelma Resende Araújo Moreira

Member: António Maria Lobo César Alarcão Ravara

December, 2019

Formally Verified Bug-free Implementations
of (Logical) Algorithms

Copyright © Pedro Miguel Laforêt Barroso, Faculty of Sciences and Technology, NOVA

University of Lisbon.

The Faculty of Sciences and Technology and the NOVA University of Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created using the (pdf)LATEX processor, based in the “novathesis” template[1], developed at the Dep. Informática of FCT-NOVA [2].
[1] https://github.com/joaomlourenco/novathesis [2] http://www.di.fct.unl.pt

https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt

Para as mulheres incríveis da minha vida: mãe, avó e Joana.

Acknowledgements

I would like to start to express my special thanks of gratitude to my advisor Professor

António Ravara and co-advisor Mário Pereira for the continuous support, availability, mo-

tivation and immense knowledge. Their guidance was fundamental, I could not imagine

having finished this dissertation without them.

To the Tezos Foundation that kindly supported this dissertation.

To the Faculty of Sciences and Technology of New University of Lisbon and in special

to the Department of Informatics for all the conditions and well hours spent, I felt like it

was my second home.

To the P3/14 colleagues for receiving me so well and all the positive vibes.

To my college group, Diogo Carrasco, Nuno Madaleno, João Neves, Tiago Conceição,

João Borralho and João Pacheco, who has always accompanied me from day one and

helped make this adventure in Computer Science even more fruitful.

To Ricardo Alves, for changing my mood and showing me that work is not everything,

that I also need to breathe.

To my girlfriend, Joana Cristóvão, for always believing in me, for showing me that

I was capable, and for the patience to put up with me even when I don’t put up with

myself.

Last but not least, I would like to thank my mom and grandmom for their wise counsel

and sympathetic ear. You are always there for me.

vii

If you never try you’ll never know.

Abstract

Notwithstanding the advancements of formal methods, which already permit their adop-

tion in a industrial context (consider, for instance, the notorious examples of Airbus,

Amazon Web-Services, Facebook, or Intel), there is still no widespread endorsement.

Namely, in the Portuguese case, it is seldom the case companies use them consistently,

systematically, or both. One possible reason is the still low emphasis placed by academic

institutions on formal methods (broadly consider as developments methodologies, verifi-

cation, and tests), making their use a challenge for the current practitioners.

Formal methods build on logics, “the calculus of Computer Science”. Computational

Logic is thus an essential field of Computer Science. Courses on this subject are usually

either too informal (only providing pseudo-code specifications) or too formal (only pre-

senting rigorous mathematical definitions) when describing algorithms. In either case,

there is an emphasis on paper-and-pencil definitions and proofs rather than on compu-

tational approaches. It is scarcely the case where these courses provide executable code,

even if the pedagogical advantages of using tools is well know.

In this dissertation, we present an approach to develop formally verified implemen-

tations of classical Computational Logic algorithms. We choose the Why3 platform as it

allows one to implement functions with very similar characteristics to the mathematical

definitions, as well as it concedes a high degree of automation in the verification process.

As proofs of concept, we implement and show correct the conversion algorithms from

propositional formulae to conjunctive normal form and from this form to Horn clauses.

Keywords: Formal Methods; Computational Logic; Propositional Algorithms; Program

verification; Functional language; Why3

xi

Resumo

Não obstante os avanços dos métodos formais, que já permitem sua adoção num contexto

industrial (considere, por exemplo, os conhecidos casos da Airbus, Amazon Web-Services,

Facebook ou Intel), ainda não existe uma ampla adoção. Nomeadamente, no caso portu-

guês, raramente as empresas os usam de maneira consistente ou sistemática. Uma possível

razão é a baixa ênfase colocada pelas instituições acadêmicas em métodos formais (geral-

mente considerados como metodologias de desenvolvimento, verificação e testes), o que

torna o seu uso num desafio para os praticantes atuais.

Os métodos formais baseiam-se na lógica, “a lingua franca da ciência da computação”.

A Lógica Computacional é, portanto, um campo essencial da Ciência da Computação.

Os cursos nesta matéria geralmente são muito informais (apenas fornecendo especifica-

ções em pseudo-código) ou muito formais (apenas apresentando definições matemáticas

exigentes) ao descrever algoritmos. Nos dois casos, existe ênfase em definições e provas

em papel e lápis, e não em abordagens computacionais. É raro o caso em que os cursos

fornecem código executável, mesmo que as vantagens pedagógicas do uso de ferramentas

sejam conhecidas.

Nesta dissertação, apresentamos uma abordagem para desenvolver implementações

formalmente verificadas de algoritmos clássicos de lógica computacional. Escolhemos a

plataforma Why3, pois permite implementar funções com características muito semelhan-

tes às definições matemáticas, além de conceder um alto grau de automação no processo

de verificação. Como provas de conceito, implementamos e mostramos corretos os algo-

ritmos de conversão de fórmulas proposicionais para a forma normal conjuntiva e desta

para cláusulas de Horn.

Palavras-chave: Lógica Computacional; Algoritmos de lógica proposicional; Verificação

de programas; Linguagem funcional; Why3

xiii

Contents

List of Figures xvii

List of Tables xix

1 Introduction 1

1.1 Context . 1

1.2 FACTOR . 2

1.3 Problem . 2

1.4 Objective . 3

1.5 Contributions . 4

1.6 Document Structure . 4

2 State of the Art 7

2.1 Current State of Computational Logic in Portugal 7

2.2 Tools to support Computational Logic . 10

2.2.1 Tarski’s World . 10

2.2.2 Fitch . 11

2.2.3 Boole . 11

2.3 Proof-Assistant Tools . 12

2.3.1 Agda . 12

2.3.2 Coq . 12

2.3.3 Isabelle/HOL . 13

2.3.4 Twelf . 13

2.3.5 Why3 . 13

2.3.6 Advantages and Disadvantages . 13

2.3.7 Conclusions . 14

3 Background 15

3.1 Program Verification . 15

3.2 Why3 . 17

3.3 Continuation-Passing Style . 18

3.4 Defunctionalization . 20

xv

CONTENTS

4 Supporting Boolean Theories 23

4.1 Boolean Theory . 23

4.2 Boolean Sets Theory . 26

4.3 Theory of Sets of Positive Literals . 27

5 Transformation Algorithm to

Conjunctive Normal Form 29

5.1 Functional presentation of the algorithm 29

5.2 Implementation . 30

5.3 How to obtain the correctness . 33

5.4 Proof of correctness . 34

5.5 Conclusions and Observations . 36

6 Transformation Algorithm from

CNF to Horn Clauses 39

6.1 Algorithm Definition . 39

6.2 Functional Presentation of the Algorithm 40

6.3 Implementation . 41

6.4 Proof of correctness . 45

6.5 Conclusions and Observations . 47

7 Towards Step-by-Step Execution 49

7.1 Continuation-Passing Style . 49

7.2 Defunctionalization . 52

7.3 Observations . 57

8 Conclusions 59

Bibliography 61

A Appendix 1 CNF Transformation Algorithm 67

A.1 Full Implementation . 67

A.2 Evaluation Functions . 68

A.3 Direct Style Proof . 70

A.4 CPS Version . 71

A.5 CPS Proof . 72

A.6 Defunctionalized Version . 74

A.7 Defunctionalized Proof . 77

B Appendix 2 Hornify 81

B.1 Full Implementation . 81

B.2 Evaluation Functions . 83

B.3 Hornify Proof . 84

xvi

List of Figures

2.1 Tarski’s World main window. 10

2.2 Fitch-checker A→ B,A→ C ∴ A→ (B∧C) proof. 11

2.3 Boole program. 12

3.1 Proof of factorial function using Why3 . 18

xvii

List of Tables

2.1 Comparison of Proof-Assistant Tools. 13

3.1 Computation of the Factorial of 5. 19

4.1 Properties of Boolean Algebra and correspondent Why3 Lemma. 24

4.2 Additional properties of Boolean Algebra and correspondent Why3 Lemma. 25

4.3 Properties of Boolean set theory and correspondent Why3 Lemma. 27

5.1 Aggregated proof time of CNF proof obligations. 36

6.1 Why3 types according to grammars. 42

6.2 Aggregated proof time of Hornify proof obligations 47

7.1 Aggregated proof time of CNF-CPS proof obligations. 51

7.2 Proof time of each defunctionalization proof obligation 57

xix

C
h
a
p
t
e
r

1
Introduction

This chapter presents a brief introduction to the work developed in this dissertation.

Starting with the contextualization (Section 1.1), a presentation of the FACTOR project

(Section 1.2), the identification of the problem (Section 1.3), the definition of the objective

(Section 1.4) and the list of contributions (Section 1.5). Lastly, it is described the structure

of the dissertation (Section 1.6).

1.1 Context

Software bugs and vulnerabilities is a common concern, not only for computer scientists

but also for the general public. News about the discovery of bugs and vulnerabilities are

published almost every day, which is making the societal tolerance to these situations to

decrease rapidly. Although some bugs are insignificant, having no consequences, there

are others that are catastrophic and unacceptable, implying severe financial consequences

or, even more seriously, a threat to human well-being.

For example, the famous Ariane 5 Flight 501 bug was that software tried to fit a 64-bit

number into a 16-bit space causing the crash of both primary and backup computers [42],

forcing engineers to push the self destruct button and, according to the Media, lose

approximately half billion dollars.

There is also recent estimations that 1,000 deaths per year are caused in the English

NHS by unnecessary bugs in their software [69].

The ambition to develop completely bug-free programs has existed nearly as long as the

field of computer science. However, verifying every single program execution scenario is

a challenge, as it is tough to imagine every single scenario and every single behaviour of

our programs. Nonetheless, programmers still make assumptions about the correctness

of their programs based on tests.

1

CHAPTER 1. INTRODUCTION

Program testing can be a very effective way to show the presence of bugs, but is hopelessly
inadequate for showing their absence.

Edsger Dijkstra

Program verification ensures that programs, under some defined specification, are

correct. So, to ensure that a program is free of bugs, we should turn ourselves to it.

However, most developers have only habits for testing and almost none for program

verification. They do not use methodologies or tools for verification on a daily basis of

programming. We shall later present a more in-depth overview of program verification.

1.2 FACTOR

This dissertation is part of the FACTOR (Functional ApproaCh Teaching pOrtuguese

couRses) project1. FACTOR is funded by the Tezos Foundation [67] and aims to promote

the use of OCaml [40] in the Portuguese academic community, namely through the sup-

port of teaching approaches and tools. In particular, it aims to broaden and consolidate

the user base of software and teaching materials in OCaml in the Portuguese commu-

nity for subjects in the area of Computational Logic and Fundamentals of Computing in

Computer Science courses.

The FACTOR project makes a modest contribution in two fundamental aspects: im-

plementation and verification of classical algorithms of Computational Logic and web

support for students to run these implementations trough step-by-step executions.

1.3 Problem

Every ten years, there is a world congress on formal methods; the last one was in Porto,

in October 2019. In this congress, there was a uniform opinion that nowadays there is a

mature approach to formal methods. However, it is still far from being general, even if

the number and quality of tools is impressive.

Foundational courses in Computer Science, like Computational Logic, aim at pre-

senting key basilar subjects to the education of undergraduate students. To strength the

relation of the topics covered to sound programming practices, it is relevant to link the

mathematical content to clear, executable and correct implementations.

In some cases, these courses could have a more computational approach. When too

informal, only pseudo-codes are provided, which hampers the understanding of all the

aspects of the algorithm, as they are far from the definitions and not executable. On

the other hand, when formal, courses decide to describe algorithms close to their math-

ematical properties and proofs, for instance in set theories, making it hard to handle.

1https://releaselab.gitlab.io/factor/

2

1.4. OBJECTIVE

Implementations of algorithms and tools that help students go through the resolutions of

exercises are crucial, as they are an important pedagogical object with proved results [55].

Another aspect to mention is the lack of material about correction. As mentioned in

Section 1.1, program verification is an important aspect of software development, since it

allows the development of bug-free software. However, some courses make only a small

effort on showing the presented algorithms correct even though this can also provide a

deeper knowledge of them.

In the Portuguese situation, it seems that formal methods are gradually being inserted.

However, from what can be assessed by internships, theses, and work in the Integrated

Masters in Computer Science, the majority develops projects without recourse to the

formal methods. For instance, the same course of the Faculty of Science and Technology

of NOVA University of Lisbon only starts referring to program verification in Software

Construction and Verification. A course for 4th-year students that is not mandatory.

1.4 Objective

The main objective of this dissertation is to contribute to the development of pedagogical

material to support the Computational Logic courses, through the implementation and

verification of standard and classical algorithms of Computational Logic.

The objective is to give supplementary pedagogical material to a course (mostly)

taught in the second year of Computer Science. The implementations should be easily

related to the algorithms described in the lectures, specially to their mathematical def-

initions. Additionally, these implementations should support step-by-step executions,

which adds the ability to slowly follow each step of the algorithm, resulting in a better

algorithm apprenticeship. This will be achieved using CPS (Continuation-passing style)

or Defunctionalization transformations.

Functional languages are specially suitable to handle symbolic computation and are

based on functions. This type of languages has a closer relationship to the mathematical

definitions, making them suitable for undergraduate students.

Once an algorithm is implemented we need to verify it. This needs to be as much

automated as possible, since the students in the second year of Computer Science have not,

or merely, acquired knowledge about program verification. Taking this into consideration

and also that the implementations are over propositional logic, or at the maximum first-

order logic, the Why3 program verification platform fits perfectly. Why3 will be later

described in Section 2.3.

3

CHAPTER 1. INTRODUCTION

1.5 Contributions

The main objective of this dissertation, as mentioned in the previous section, is to develop

pedagogical material to support Computational Logic courses. We contribute with clear

identification of the properties and specifications of two algorithms, one that converts

propositional formulae into Conjunctive Normal Form (CNF) and the other from CNF to

Horn clauses. The identification will help the relation between the implementation and

the mathematical definitions, and also support the correspondent correctness criteria and

proof.

Given the importance of step-by-step executions, we also provide CPS/Defunction-

alization transformations. In the future, these will be used and incorporated in a web

environment that will help and guide students throughout the algorithms.

In summary, the contributions are:

1. Clear identification of properties and specifications of two propositional logic algo-

rithms.

2. Presentation of their correspondent correctness criteria.

3. Definition of correctness proofs of their implementations using Why3.

4. CPS and Defunctionalised versions of the CNF conversion algorithm, also proved

corrected.

1.6 Document Structure

The remainder of this dissertation is organised as follows:

• Chapter 2 - State of the Art reports the aspects of Computational Logic courses, the

existing tools to support them and the main proof-assistant tools.

• Chapter 3 - Background does in-depth view about program verification, continuation-

passing style and defunctionalization; it also presents a simple proof in Why3.

• Chapter 4 - Supporting Boolean Theories defines the theories used in our imple-

mentations.

• Chapter 5 - Transformation Algorithm to

Conjunctive Normal Form presents the implementation and verification of the al-

gorithm that converts propositional formulae to CNF.

• Chapter 6 - Transformation Algorithm from

CNF to Horn Clauses presents the implementation and verification of the algorithm

that converts CNF formulae to Horn Clauses.

• Chapter 7 - Towards Step-by-Step Execution shows the CPS and Defunctionaliza-

tion transformation of the implementations.

4

1.6. DOCUMENT STRUCTURE

• Chapter 8 - Conclusions synthesizes the work developed and presents the conclu-

sions taken from the study conducted in this dissertation.

5

C
h
a
p
t
e
r

2
State of the Art

In Chapter 1 we made an introduction to the context and problem of this dissertation,

mentioning the importance of Computational Logic courses, the lack of tools and imple-

mentations of algorithms, and the little emphasis about program verification.

This chapter presents a global overview of Computational Logic courses in Portugal,

contrasting with the ACM and IEEE recommendations, and the actual tools to support

these courses. Still in this chapter we present and compare the most common proof-

assistant tools.

2.1 Current State of Computational Logic in Portugal

According to the 2013 Curriculum Guidelines for Undergraduate Degree Programs in

Computer Science of ACM and IEEE [23] basic logic (propositional and first-order logic),

proof techniques and formal methods should be covered, respectively, in 9, 10 and 4.5

core hours.

Computational Logic is an essential field of Computer Science. Symbolic systems

are at the roots of Informatics, with implications in many areas. The development of

appropriate solutions to problems requires rigorous approaches, based on precise formal

models that ensure the quality and correctness of the systems built. It is a mandatory

unit usually taught in the second year of the Computer Science course that covers the

principal aspects of propositional and first-order logic. This unit is very important for

Computer Science students, as they should learn to reason about computer programs in

a more mathematical way.

In this section we present the global overview of the current state of Computational

Logic in Portugal. The overview here described is based on “Report on the Curricular

7

CHAPTER 2. STATE OF THE ART

Unit Computational Logic” of the professor António Ravara [61] and in the information

available online (December 2019).

FCT-NOVA

The Integrated Master in Computer Science has the course Computational Logic, that is

a compulsory curricular unit, being taught in the first semester of the second year. Its

weekly workload is 2 theoretical hours and 3 practical hours, corresponding to 6 ECTS

credit units. In the unit, an introduction to the first order logic, focused on the notions of

formal language and argumentation as well as its formalization in deduction systems, is

studied. Two systems (natural deduction and resolution) are studied. Emphasis is placed

on the practical use of logic for problem-solving, that is, on its computational aspects [45].

The bibliographic’s main reference is "Language Proof and Logic (2nd edition)" [9].

University of Beira Interior

The degree in Computer Science and Engineering offers a Computational Logic course, a

compulsory curricular unit thaught in the first semester of the second year. The references

are “Logic in Computer Science: Modelling and Reasoning about Systems” [35] and

“Rigorous Software Development, An Introduction to Program Verification” [5]. The

course has also important additions: all the algorithms presented in the lectures are

implemented in OCaml and the syllabus includes Boolean Satisfiability problem solving

(SAT) and Satisfiability Modulo Theories (SMT) [46]

IST

The degree in Informatics Engineering and Computers has the course Logic for Program-

ming [43] that teaches propositional and first-order logic, resolution, and Prolog. It is

a compulsory curricular unit thaught in the second semester of the first year. The bibli-

ographic references are the following: “Lógica e Raciocínio” [48], “Mathematical Logic

for Computer Science” [13]; and “Logic in Computer Science: Modelling and Reasoning

about Systems” [35].

University of Algarve

The course Logic and Computation [37] addresses propositional and first-order logic (syn-

tax, semantics, and deductive systems). The bibliographic references are “Mathematical

Logic for Computer Science” [13] and “Introduction to the Theory of Computation” [64].

University of Aveiro

The degree in Informatics Engineering does not addresses a specific course on logic.

Propositional and first-order logics are part of the Discrete Mathematics course [50].

The bibliographic main references are: “Matemática Discreta” [19]; “Discrete Mathe-

matics” [14]; “Concrete Mathematics - A Foundation for Computer Science” [30]; and

“Applied and Algorithmic Graph theory” [20].

8

2.1. CURRENT STATE OF COMPUTATIONAL LOGIC IN PORTUGAL

University of Minho

The course Lógica EI [47] addresses propositional and first-order logic (syntax, semantics,

and deductive systems). The bibliographic main reference is “Logic and Structure” [24].

University of Lisbon

The degree in Informatics Engineering has a course on First-Order Logic. The main

bibliography reference is again “Language, Proof and Logic” [9].

Faculty of Engineering of University of Porto

The degree in Informatics Engineering does not addresses a specific course on logic.

Propositional and first-order logics are part of the Discrete Mathematics course [49]. The

bibliographic main references are “Language, Proof and Logic” [9] and “Discrete Mathe-

matics with Graph Theory” [29].

Faculty of Sciences of University of Porto

The degree in Computer Science and its integrated master’s degree in Network and Infor-

mation Systems Engineering have a course on Computational Logic in the first semester

of the second year [44]. It covers Propositional and First-Order Logic (syntax, semantics,

algorithms for satisfiability checking, deductive systems, and resolution) and automatic

demonstration in prolog of Horn clauses, unification and resolution. In the exercises of

the course, students need to implement specific algorithms in a language of their choice.

The main bibliography reference is again Huth and Ryan, and the Lecture Notes of Nelma

Moreira [52].

Conclusion. The Logic courses in the Computer Science degrees in Portugal mostly

follow the ACM and IEEE recommendations. The courses including a computational

view, present satisfiability algorithms and the resolution method. Barwise & Etchemendy

and Huth & Ryan are the most common references [61].

Only the courses at UBI provides to the students implementations of all the basic

algorithms in a functional language (OCaml). Some universities provides implementa-

tions closer to Prolog. However, in contrast to OCaml, Prolog does not have a strong type

discipline. Every data is treated as a unique type, which nature depends of the way its

have been declared. This is a huge disadvantage noticeably when defining grammars as

types.

On the other hand, if we search for verification of Prolog programs, few results emerge.

The main works seems to be PrologCheck, an automatic tool for property based testing

of Prolog programs, that given a specification it randomly generates test cases for the

properties to be tested, executing them and estimating their validity. It is inspired by the

QuickCheck tool, that was originally designed for Haskell [6]. It would be interest to use

the tool to achieve our goals and compare the results.

The “Formal Methods: A First Introduction using Prolog to specify Programming

Language Semantics” [31] presents the idea of using first-order Horn Clauses for spec-

ification and proof scripting language, contributing also, with a module that facilitates

9

CHAPTER 2. STATE OF THE ART

Figure 2.1: Tarski’s World main window.

the use of Prolog as a proof assistant. Again, it would be interesting to see if our aims are

feasible in this setting.

Finally, there is an analyser for verifying the correctness of a Prolog program [22]. It

combines, adapts and sometimes improves various existing static analyses in order to

verity total correctness of Prolog programs regarding to formal specification.

2.2 Tools to support Computational Logic

Support tools have an important role in the process of learning something, it helps to

understand the concept of the given matter, while it also increases the motivation of the

student [55]. In this section we present the actual existing tools to support Computational

Logic.

2.2.1 Tarski’s World

Tarski’s World is an essential tool for helping students learning the language of logic.

The program allows students to build three-dimensional worlds and then describe them

in first-order logic [8]. The program is more like a game where students can create

worlds and make sentences about the constructed world, the program then evaluates the

sentences and give feedback to the user.

Figure 2.1 shows the interface, which is very intuitive and is easy to use. Students can

easily play with the program and, at the same time, learn.

10

2.2. TOOLS TO SUPPORT COMPUTATIONAL LOGIC

Figure 2.2: Fitch-checker A→ B,A→ C ∴ A→ (B∧C) proof.

2.2.2 Fitch

Fitch notation is a system for constructing natural deduction proofs used in propositional

and in first-order logic. Fitch-style proofs arrange the sequence of sentences that make

up the proof into rows [1]. It has a unique feature where the degree of indentation of

each row indicates which assumptions are active for that step.

Here is an example that prove that P↔¬¬ P: (from Fitch Notation Wikipedia page):

1 |__ [assumption, want P iff not not P]

2 | |__ P [assumption, want not not P]

3 | | |__ not P [assumption, for reductio]

4 | | | contradiction [contradiction introduction: 2, 3]

5 | | not not P [negation introduction: 3]

6 |

7 | |__ not not P [assumption, want P]

8 | | P [negation elimination: 7]

9 |

10 | P iff not not P [biconditional introduction: 2 - 5, 7 - 8]

Fitch-checker helps the construction and validation of this style of deduction. Figure 2.2

shows the proof of A→ B,A→ C ∴ A→ (B∧C) with this tool.

2.2.3 Boole

Boole [17] is a simple tool that helps students to build and verify truth tables. The

figure 2.3 shows the user interface of the Boole program.

11

CHAPTER 2. STATE OF THE ART

Figure 2.3: Boole program.

2.3 Proof-Assistant Tools

These interactive tools are computer systems to help the development of formal proofs

by human-machine collaboration [27]. In this section, we present the most popular tools

based on a functional programming language.

2.3.1 Agda

Agda [18] is a dependently typed functional programming language. It is based on in-

tuitionistic type theory and has many similarities with other proof assistants based on

dependent types, such as Coq. However, in constrast to Coq it has no support for tactics
1. The user sees a partially proof term during the process. The incomplete parts of the

term are represented by place-holders, called meta variable [41].

2.3.2 Coq

Coq [10] is an interactive proof assistant based on type theory. Coq uses the Calculus of

Inductive Constructions that itself combines both a higher-order logic and a richly-typed

functional programming language. Similar to Why3, Coq can extract certified OCaml

programs. In proofs, Coq combines two languages: Gallina and Ltac. The statement for

proof and structures it relies on are written in Gallina, a functional language, while the

proof process is being treated by the commands written in Ltac, a procedural language

for manipulating the proof process [68].

1A tactic replaces the goal with the sub-goals it generates.

12

2.3. PROOF-ASSISTANT TOOLS

2.3.3 Isabelle/HOL

Isabelle/HOL [56] is a simply typed higher-order logic inside the logical framework Is-

abelle. It is not primarily intended as an platform for program verification and does

not contain specific syntax for stating pre and post conditions. Similar to the previous

theorem provers described, Isabelle/HOL also has his special ML programming language.

It combines two languages: HOL as a functional language and Isar as a language for

describing procedures to manipulate the proof [21].

2.3.4 Twelf

Twelf [59] provides meta-language used to specify, implement, and prove properties of

deductive systems such as programming languages and logics. It relies on the LF type

theory developed by Frank Pfenning and Carsten Schürmann [58]. Twelf can be used as a

logic programming language. However, there is no sophisticated operators (such as ones

for performing I/O), which turns it less well-suited for practical logic programming ap-

plications. The Twelf theorem proving component is at an experimental stage (2016) [71,

72].

2.3.5 Why3

Why3 is a platform for deductive program verification. The Why3 objective is to pro-

vide as much automation as possible when performing proofs, which distinguishes it

from other platforms. It provides a language for specification and programming, called

WhyML (a first-order language with polymorphic types, pattern matching, and inductive

predicates), a mechanism to extract certified OCaml programs and support to third-party

theorem provers, both automated and interactive. This is an added value when the user

wants to use different provers, rather than stick to just one. Why3 standard library is

formed of many logic theories (in particular for integer and floating point arithmetic, sets,

and dictionaries) and basic programming data structures. It also has support for partial

functions [16].

2.3.6 Advantages and Disadvantages

Proof-Assistant Tool Language Order User Effort Automation

Agda Higher-Order Medium None
Coq Higher-Order Medium Low
Isabelle/HOL Higher-Order Medium Medium
Twelf Higher-Order Medium Low
Why3 First-Order Low High

Table 2.1: Comparison of Proof-Assistant Tools.

13

CHAPTER 2. STATE OF THE ART

When choosing a proof-assistant tool it is important to relate each one’s capabilities ac-

cording to our needs. Many factors may suggest the use of one proof-assistant over the

others. In the Table 2.1, some of these factors are described, i.e, language order, user

effort and automation. Comparisons between them are, however, scarce [73, 74].

All the described proof-assistant support first and higher-order languages (except

Why3 that focus on first-order, providing only higher-order “curried” syntax). The user

effort point of view is related to the degree of automation, as the more automation, the

less effort the user will have.

Why3 is suited for proofs that allow for more automation and to properties that are

mainly focus in first-order language, as Coq and Isabelle require more expertise but offers

support to higher-order. Agda power as a programming language is similar to Coq (with

main differences being pattern matching). However, does not support tactics, notations,

extraction and wide library, which hampers its use effort.

Twelf differs from the rest, as the proofs are typically developed by hand and does not

have the full potential as a programming language.

2.3.7 Conclusions

This dissertation aims at contributing to increase the use of OCaml in Portuguese Univer-

sities, proving that they are suitable for algorithm presentations and simple proofs. The

majority of the proof-assistant tools presented offer some ML-like language. However,

only Coq and Why3 can extract certified OCaml programs. The difference between Coq

and Why3 is that the former is based on a first-order logic with inductive predicates and

automatic provers, and Coq on an expressive theory of higher-order logic [21]. Crucially

for this work, Why3 provides a degree of automation suitable for undergraduate students,

where Coq is interactive and require much more expertise.

14

C
h
a
p
t
e
r

3
Background

Chapter 2 presents some proof-assistant tools, and concludes that Why3 is the ideal

tool for the implementation and verification of classical logic algorithms. This chapter

presents the concept of program verification, a simple proof using Why3 (we use a fac-

torial function as an example). Lastly, we discuss the continuation-passing style and

defunctionalization as a way to have an explicit stack structure. Therefore, in the future,

it will be possible to introduce a mechanism that allows step-by-step executions.

3.1 Program Verification

I hold the opinion that the construction of computer programs is a mathematical activity like the
solution of differential equations, that programs can be derived from their specifications through
mathematical insight, calculation, and proof, using algebraic laws as simple and elegant as those
of elementary arithmetic.

C. A. R. Hoare

Program verification is the use of formal, mathematical techniques to ensure that a pro-

gram is correct. The process begins with the formal description of a specification for a

program in some symbolic logic, following with a proof that the program meets the for-

mal specification. The analogy to a sequent in program verification is a Hoare triple [33],

so named because it is made up of three components: precondition (B), program (P) and

postcondition (A).

{B} P {A}

The triple means that, if the precondition B is true in a state before the execution of the

program P, then the resulting state will satisfy the postconditions A.

15

CHAPTER 3. BACKGROUND

Partial versus Total Correctness. The Hoare triple mentioned before is a partial cor-

rectness triple for specifying and reasoning about the behaviour of a program. A partial

correctness triple because assuming that the precondition is true just before the program

executes, then if the program terminates, the postcondition is true. In order to be

totally correct, program’s termination must be guaranteed. Therefore, total correctness is

partial correctness plus termination.

Weakest Precondition. Consider the correct Hoare triple {y = 2} y = y * 2 {y > 0}. Al-

though correct, this Hoare triple is not as precise as it could be. Namely, we could have

a stronger postcondition. For example, y < 10 && y > 2 is stronger (gives more infor-

mation). The strongest and most useful postcondition we could have is y = 4. So, if {B}

P {A} and for all A’ such that {B} P {A’}, the A’ =⇒ A, then we are facing the strongest

postcondition of S with respect to the B. The same way in the opposite direction. If

{B} P {A} and for all A’ such that {A’} P {B}, B’ =⇒ B, then we are facing the weakest

precondition wp(P,A) of P with respect to the A [4].

Edsger Dijkstra had a major role in the automation of deductive program verification

with his work for weakest precondition calculus [25]. The idea behind is that given a

statement P, the weakest-precondition of P is a function, denoted wp(P,postcondition),

that computes the weakest precondition on the initial state ensuring that execution of

P terminates in a final state satisfying the postcondition. Therefore, we can write the

following valid Hoare triple:

{wp(P ,A)} P {A}

The validity of a Hoare triple {B} P {A} is provable in Hoare logic for total correctness if

and only if the first-order predicate below holds:

B =⇒ wp(P ,A)

The weakest precondition calculus is the core of some automatic verification condition

generators (VCG). Why3, the verification tool used as the platform for deductive program

verification in this dissertation, is one of these tools. There are however, other tools like

Dafny [39], VeriFast [38] and Viper [54], based on separation logic instead of first-order

logic.

The VCG takes as input a program along with the desired specification and generates

a set of logical statements called verification conditions. Then the second part of the

verification process starts, prove the validity of these logical statements. For that, one

uses theorem provers, a standard approach to discharge verification conditions, or if

one wants more automation uses SMT’s (Satisfiability Modulo Theory) solvers [11], for

example, Alt-Ergo [15], CVC4 [12] and Z3 [53].

16

3.2. WHY3

3.2 Why3

A brief description of Why3 was presented in Section 2.3.5. The purpose of this section

is to see Why3 in action: we will present the implementation and verification of a simple

example.

Considering the following naive factorial function implemented in WhyML:

let rec fact_naive (x: int) : int

= if x = 0 then 1

else x * fact_naive (x - 1)

The first step is to reason about the properties of the program. The factorial function

needs to receive as input a positive integer, otherwise, the program will enter in a loop

and not terminate. This is called a precondition of the program and is indicated with the

requires statement:

let rec fact_naive (x: int) : int

requires{ x ≥ 0 }

= ...

For the postcondition, the factorial function provided in the standard library of Why3 is

used as specification, thus ensuring that the result of the function is equal to the result

of the standard factorial function. The postconditions are indicated with the ensures

statement:

let rec fact_naive (x: int) : int

requires{ x ≥ 0 }

ensures{ result = fact x }

= ...

This specification ensures the partial correctness of the fact_naive function. To prove

the total correctness, as seen in Section 3.1, we must ensure termination. In Why3 we

prove termination using the variant statement. We must provide a variable of our

program that in each iteration of the program is closer to 0. In our example, the variant

is the variable x:

let rec fact_naive (x: int) : int

requires{ x ≥ 0 }

variant{ x }

ensures{ result = fact x }

= ...

The graphical interface of the proof can be observed in the Figure 3.1.

17

CHAPTER 3. BACKGROUND

Figure 3.1: Proof of factorial function using Why3

3.3 Continuation-Passing Style

Continuation-Passing Style (CPS) is a programming style where the control is passed

explicitly in the form of a continuation [7]. Normal functions take in some arguments,

perform some computations and then return the result. CPS functions will have an extra

parameter called a continuation, a function itself. The idea behind the CPS is to tell the

program how to continue after getting the desired value (result), thus making the return

an explicit action; instead of returning the result of the computation, the program calls

the continuation [66].

Considering the naive factorial function written presented in the section above:

let rec fact (x: int) : int

= if x = 0 then 1

else x * fact (x - 1)

To transform the function into CPS, we need to add an extra parameter (the continuation)

and use it instead of returning the values. Therefore, we add the continuation k to our

factorial function:

let rec fact (x: int) (k: int → int) : int

...

Henceforth, we need to use this k function instead of returning the values. For x = 0, we

just apply our k function to 1 (the returning element). For the remaining cases, when x

is bigger than 0, we write a new continuation that combines the current element x with

the result of the future continuations (arg), which is then passed to the next function

iterations:

18

3.3. CONTINUATION-PASSING STYLE

let rec fact_cps (x: int) (k: int → int) : int

= if x = 0 then k 1

else fact_cps (x - 1) (fun arg → k (x * arg))

In Table 3.1 is present the computation of the Factorial of 5. Practically, this computation

can be seen as: (5 * (4 * (3 * (2 * (1 * 1))))).

Iteration # Result

First Call fact_cps (5) (fun arg -> arg)

1st Iteration fact_cps (4) (fun arg5 -> arg (5 * arg5))

2nd Iteration fact_cps (3) (fun arg4 -> arg5 (4 * arg4))

3rd Iteration fact_cps (2) (fun arg3 -> arg4 (3 * arg3))

4th Iteration fact_cps (1) (fun arg2 -> arg3 (2 * arg2))

5th Iteration fact_cps (0) (fun arg1 -> arg2 (1 * arg1))

6th Iteration arg1 1

Table 3.1: Computation of the Factorial of 5.

At each iteration, a continuation k is received, a new one is created and passed down

to the next iteration. The continuation contains the deferred operations of the previous

iterations [70].

The main advantage is the total control over program flow. In CPS there is no se-

quence of statements. Instead, each statement has an explicit function call for the next

one. Furthermore, if the underlying compiler optimizes recursive terminal calls, CPS

completely suppress the “normal” implicit language stack, avoiding error such as the

overflow of the stack.

Since the step-by-step execution is an objective of this dissertation, this full control

over program flow will be useful. The continuation function can be used as a block, thus

allowing to stop and return the execution.

Automatic CPS Transformation. As part of the FACTOR project objectives, an exten-

sion (ppx) incorporated in the OCaml compilation process has been developed. This

extension uses technologies to modify code and syntactic expressions to automatically

rewrite code into CPS [63].

19

CHAPTER 3. BACKGROUND

3.4 Defunctionalization

Defunctionalization is a program transformation technique to convert high-order pro-

grams into first-order. Originally, it was introduced by Reynolds as a technique to trans-

form a higher-order interpreter into a first-order one [62]. Recent studies uses this tech-

nique to derive abstract machines for different strategies of evaluation of the lambda-

calculus from compositional interpreters [3, 57].

Let us consider the example of our factorial function in CPS to better understand the

defunctionalization technique:

let rec fact_cps (x: int) (k: int → int) : int

= if x = 0 then k 1

else fact_cps (x - 1) (fun arg → k (x * arg))

As it is possible to observe, there are two anonymous functions in the fact_cps function.

The continuation arg and the identity function fun x → x. In order to defunctionalize

this function, we need to represent in first-order these two anonymous functions. For

that, we create a new type that captures the values of the free variables:

type ’a k =

| Kid

| KFact (’a k) (int)

The Kid represents the identity function, thus does not have any free variable. The KFact

represents the function (fun arg→ ...) having the continuation k and the value of x (int).

Having this representation, it is possible to substitute the anonymous functions with the

corresponding constructor:

let rec fact_cps (x: int) (k: int → int) : int

= if x = 0 then ...

else fact_cps (x - 1) (KFact k x)

The next step of the process is to substitute the applications in the original program. For

that, we introduce the apply function:

let rec apply (k: ’a k) (v: int)

= match k with

| Kid → v

| KFact k x → apply k (x * v)

end

The final step is to use this function to replace all the applications of the continuation k:

let rec fact_cps (x: int) (k: int → int) : int

= if x = 0 then apply k 1

else fact_cps (x - 1) (KFact k x)

20

3.4. DEFUNCTIONALIZATION

Transformation process. As seen above, the defunctionalization transformation follows

two general steps, allowing thus the mechanization of this process: get a first order

representation of the function continuations, replace the continuations with this new

representation and then introduce a new a function apply which replaces the applications

of functions in the original program.

21

C
h
a
p
t
e
r

4
Supporting Boolean Theories

A rich Boolean theory allows us to have clear proofs and increase the degree of automation.

Since we want to have control and more in-depth knowledge of the theory, we preferred to

adopt a back-to-basics strategy and build ourselves the Boolean theory that will support

our implementations.

This chapter presents the foundation of our work. Section 4.1 exhibits our Boolean

theory, and in Sections 4.2 and 4.3 the theories for Boolean and positive literals sets,

respectively.

4.1 Boolean Theory

In a Boolean Theory or Boolean Algebra the values of the underlying set are true and

false. It is a formal way for describing logical operations in the same way that elementary

algebra describes numerical operations.

A Boolean Algebra consists of a set S, equipped with two binary operations (conjunc-

tion and disjunction), one unary operation (negation) and two elements (bot and top). To

implement this set in Why3, we first define the type t with the bot and top constants:

type t

constant bot: t

constant top: t

For the operations, we implement them as functions, resorting the main ones to their

respectives of the Why3 Boolean type. The / ∗ \ function defines conjunction (using the

conjunction of Why3), the \ ∗ / function defines disjunction (using the disjunction of

Why3), then neg function defines negation as a complement operation, and additionally,

the ->* function defines implication as an abbreviation, the composition of disjunction

and complement operations, as usual. The code follows.

23

CHAPTER 4. SUPPORTING BOOLEAN THEORIES

let function (/*\) (x y : t) : t =

if x = top ∧ y = top then top else bot

function (*/) (x y : t) : t =

if x = top ∨ y = top then top else bot

function neg (x : t) : t =

if x = bot then top else bot

function (→*) (x y : t) : t =

(neg x) */ y

Six axioms defines the set S. Table 4.1 shows these properties and the corresponding

Why3 Lemma.

Property Name Operation Boolean Property Why3 Lemma

Absorption
Conjunction a∧ (a∨ b) = a (1)

Disjunction a∨ (a∧ b) = a (2)

Identity
Conjunction a∧> = a (3)

Disjunction a∨⊥ = a (4)

Associativity
Conjunction a∧ (b∧ c) = (a∧ b)∧ c (5)

Disjunction a∨ (b∨ c) = (a∨ b)∨ c (6)

Commutativity
Conjunction a∧ b = b∧ a (7)

Disjunction a∨ b = b∨ a (8)

Distributivity
Conjunction a∧ (b∨ c) = (a∧ b)∨ (a∧ c) (9)

Disjunction a∨ (b∧ c) = (a∨ b)∧ (a∨ c) (10)

Complements
Conjunction a∧¬a =⊥ (11)

Disjunction a∨¬a => (12)

Table 4.1: Properties of Boolean Algebra and correspondent Why3 Lemma.

(1) lemma and_abso_elem: forall x. x /*\ bot = bot

(2) lemma or_abso_elem: forall x. x */ top = top

(3) lemma and_neutral_elem: forall x. x /*\ top = x

(4) lemma or_neutral_elem: forall x. x */ bot = x

24

4.1. BOOLEAN THEORY

(5) lemma and_assoc: forall x y z. x /*\ (y /*\ z) = (x /*\ y) /*\ z

(6) lemma or_assoc: forall x y z. x */ (y */ z) = (x */ y) */ z

(7) lemma and_comm: forall x y : t. x /*\ y = y /*\ x

(8) lemma or_comm: forall x y : t. x */ y = y */ x

(9) lemma and_distr:

forall x y z : t. x /*\ (y */ z) = (x /*\ y) */ (x /*\ z)

(10) lemma or_distr:

forall x y z : t. x */ (y /*\ z) = (x */ y) /*\ (x */ z)

(11) lemma compl_bot: forall x : t. x /*\ neg x = bot

(12) lemma compl_top: forall x : t. x */ neg x = top

If we define a+ b := (a∧¬b)∨ (b ∧¬a) = (a∨ b)∧¬(a∧ b) and a . b := a∧ b, the Boolean

Algebra induces a Boolean ring (a ring that holds the property a2 = a). The zero element

of the ring coincides with the ⊥ of the Boolean Algebra, and the multiplicative identity

element with the > [65].

We also ensure the properties of the Table 4.2 hold the Boolean Algebra.

Property Name Boolean Property Why3 Lemma

Top is equivalent to the negation of bot > = ¬⊥ (1)

Double negation ¬¬a = a (2)

De Morgan’s Laws
Conjunction ¬(a∧ b) = (¬a ∨ ¬b) (3)

Disjunction ¬(a∨ b) = (¬a ∧ ¬b) (4)

Table 4.2: Additional properties of Boolean Algebra and correspondent Why3 Lemma.

(1) lemma repr_of_top : (top) = (neg (bot))

(2) lemma doubleneg: forall b. neg (neg b) = b

(3) lemma deMorgan_and: forall x1 x2. neg (x1 /*\ x2) = ((neg x1) */ (neg x2))

(4) lemma deMorgan_or: forall x1 x2. neg (x1 */ x2) = ((neg x1) /*\ (neg x2))

We could also define the property that ensures that bot differs from top, but since that

would not give more information to the provers, we decide to omit it.

25

CHAPTER 4. SUPPORTING BOOLEAN THEORIES

4.2 Boolean Sets Theory

Algorithms commonly use sets as their primary data type. The transformation algorithm

from Conjunctive Normal Form to Horn Clauses, presented in Chapter 6, uses them to

keep track of the negative literals of certain formulae.

In this theory a range of supporting lemmas holds for a set of our Boolean type. We

start by defining the set of type t using the fset module present in the standard library

of Why3. This module provides functions to manipulate sets: add to insert elements in

the set; remove that deletes elements from the set; pick that takes one element from the

set; cardinal that returns the number of elements in the set; is_empty that checks for

emptiness; and empty, the constant that represents an empty set.

type boolset = fset t

For the evaluation, we have distinguished two ways of evaluating each set. The first one

evaluates each element of the set positively using the conjunction operator and the second

one negatively using the disjunction operator:

let rec ghost function eval_positive (s: boolset): t

variant { cardinal s }

= if is_empty s then neg bot

else let x = pick s in

x /*\ eval_positive (remove x s)

let rec ghost function eval_negative (s: boolset) : t

variant { cardinal s }

= if is_empty s then bot

else let x = pick s in

neg (x) */ eval_negative (remove x s)

The fset module does not implement the pick function. It is a specification, therefore, it

can only be used in a logical context (ghost).

Table 4.3 contains the definitions of the supporting lemmas, based on the evaluation func-

tions. The first one tells that evaluating a set negatively is equivalent to the negation of

the positive evaluation. The second and third lemmas, states that evaluating a set with an

added element is equivalent to the value of the added element with the evaluation of the

rest of the set. The last four are the absorbent and neutral elements. In the absorbent lem-

mas, adding bot to a set will give an evaluation of bot/top (depending on the evaluation

function, bot if the positive and top if the negative) no matter what previous elements

presented in. In the neutral lemmas, evaluating a set with an added top is equivalent to

evaluating the set without it.

26

4.3. THEORY OF SETS OF POSITIVE LITERALS

Property Name Boolean Property Why3 Lemma

Negative eval equivalent to negation of positive nval(s) = ¬pval(s) (1)

Adding element evaluation
Positive eval pval(s∪ {a}) = a∧ pval(s) (2)

Negative eval nval(s∪ {a}) = ¬a∨nval(s) (3)

Adding absorvent element
Positive eval pval(s∪ {⊥}) =⊥ (4)

Negative eval nval(s∪ {⊥}) => (5)

Adding neutral element
Positive eval pval(s∪ {>}) = pval(s\{>}) (6)

Negative eval nval(s∪ {>}) = nval(s\{>}) (7)

Table 4.3: Properties of Boolean set theory and correspondent Why3 Lemma.

(1) let rec lemma neg_positive_isnegative (s: boolset)

variant {cardinal s}

ensures {neg (eval_positive s) = eval_negative s }

= if cardinal s > 0 then

let x = pick s in

neg_positive_isnegative (remove x s)

(2) lemma eval_positive_add: forall s x.

eval_positive (add x s) = ((x) /*\ eval_positive s)

(3) lemma eval_negative_add: forall s x.

eval_negative (add x s) = ((neg (x)) */ eval_negative s)

(4) lemma eval_positive_abso: forall s x.

x = bot → (eval_positive (add x s) = bot)

(5) lemma eval_negative_abso: forall s x.

x = bot → (eval_negative (add x s) = top)

(6) lemma eval_positive_neutral: forall s x.

x = top → (eval_positive (add x s) = eval_positive s)

(7) lemma eval_negative_neutral: forall s x.

x = top → (eval_negative (add x s) = eval_negative s)

4.3 Theory of Sets of Positive Literals

As mentioned in the previous section, the algorithm presented in Chapter 6 uses a set to

keep track of the negative literals of a specific formula. We now present a similar theory

but, in this case, using a set of positive literals. A positive literal is a positive atomic

27

CHAPTER 4. SUPPORTING BOOLEAN THEORIES

formula. Therefore, the type pliteral only contains a bottom element ⊥ (denoting false)

or variables.

type pliteral =

| LBottom

| LVar i

type pliteralset = fset pliteral

To evaluate this type of set, we cast it to our Boolean set and later use its evaluation

functions. The cast function is axiomatic and, given a set and a map from i to t, outputs

a Boolean set.

function cast_setPF_setB (fset pliteral) (i → t) : fset t

The following two axioms define the function. The cast_def_empty tells that casting an

empty set results also in empty set.

axiom cast_def_empty: forall s f. is_empty s → cast_setPF_setB s f = empty

In the case the set is not empty (the axiom cast_def_add), we construct the cast set recur-

sively, picking one element at each iteration and adding the result of its evaluation to the

set.

axiom cast_def_add : forall s f.

not (is_empty s) → forall x. mem x s →
cast_setPF_setB s f = add (eval_pliteral x f) (cast_setPF_setB (remove x s) f)

Note that, the eval_pliteral is a function that, using the map from i to t, converts the

type pliteral to t.

The evaluation functions are then the following:

let rec ghost function eval_negative (s: fset pliteral) (f: i → t) : t

= BoolSet.eval_negative (cast_setPF_setB s f)

let rec ghost function eval_positive (s: fset pliteral) (f: i → t) : t

= BoolSet.eval_positive (cast_setPF_setB s f)

For the lemmas, we ensure the same properties of the Boolean set theory (Table 4.3)

and one added property. This apprises that evaluating a pliteral element is the same as

evaluating a set with only that element (singleton):

lemma eval_singleton_equalEvalpliteral:

forall x e1 e2 f. e1 = CPL x ∧ e2 = singleton x →
eval_positive e2 f = Horn.eval_positive e1 f

28

C
h
a
p
t
e
r

5
Transformation Algorithm to

Conjunctive Normal Form

The Conjunctive Normal Form (CNF) 1 is commonly used in logical algorithms. The

algorithm for converting propositional formulae to CNF is often presented formally, with

rigorous mathematical definitions that are sometimes difficult to read [26, 32, 51], or

informally, intended for Computer Science but with textual definitions in non-executable

pseudo-code [13, 36]. The implementation of algorithms of this nature is a fundamen-

tal piece for learning and understanding them. Herein, we present its implementation,

formally verified in Why3, from a presentation as a recursive function of the conversion

algorithm to CNF.

5.1 Functional presentation of the algorithm

For simplicity let us call T to the algorithm that converts any propositional logic formula

to CNF. A propositional logic formula φ is an element of the set Gp, defined as follows:

Gp , φ ::= ł | ¬φ | φ∧φ | φ∨φ | φ→ φ (formula)

ł ::= p | ⊥ (atomic_formula),

where p ranges over a set of propositional variables.

The function T produces formulae in CNF, where a formula in CNF is an element of

1A formula is in CNF if it is a conjunction of clauses, where a clause is a disjunction of literals and a
literal is a propositional symbol or its negation.

29

CHAPTER 5. TRANSFORMATION ALGORITHM TO

CONJUNCTIVE NORMAL FORM

the set Jp, defined as follows:

Jp , χ ::= χ∧χ | τ

τ ::= l | ¬l | τ ∨ τ

ł ::= p | ⊥

Herein, we have T: Gp→ Jp, where:

T(φ) = cnfc (nnfc (impl_free (φ)))

The algorithm composes three functions:

• The impl_free function, responsible for eliminating the implications;

• The nnfc function, responsible for converting to Negation Normal Form (NNF). A

formula is in NNF if the negation operator is only applied to sub-formulae that are

literals.

• The cnfc function, responsible for converting from NNF to CNF.

Each of the functions produces propositional formulae from different sets. The cnfc

function produces formulae from the Jp set previously defined. The impl_free function

produces formulae from the Hp set and the nnfc function from the Ip set:

Hp , ψ ::= ł | ¬ψ | ψ ∧ψ | ψ ∨ψ

ł ::= p | ⊥

Ip , ε ::= ł | ¬ł | ε∧ ε | ε∨ ε

ł ::= p | ⊥

5.2 Implementation

The first step in the implementation is to define the types of the formulae according to

the grammars presented in the previous section.

Analysing the sets, it is possible to observe that the grammar of atomic formulae (liter-

als) is present in all of them. So, we decided to create a general type literal representing

this grammar:

type pliteral =

| LBottom

| LVar i

The set Gp has literals, conjunctions, disjunctions, implications, and a primitive negation

connective. It is represented by the type formula:

30

5.2. IMPLEMENTATION

type formula =

| L pliteral

| Neg formula

| And formula formula

| Or formula formula

| Impl formula formula

The set Hp is the set Gp without implications, and is represented by the type formula_wi:

type formula_wi =

| L_wi pliteral

| FAnd_wi formula_wi formula_wi

| FOr_wi formula_wi formula_wi

| FNeg_wi formula_wi

The set Ip has literals, conjunctions, disjunctions, and the negation connective (applied

to literals). It is represented by the type formula_nnf:

type formula_nnf =

| L_nnf pliteral

| FNeg_nnf pliteral

| FAnd_nnf formula_nnf formula_nnf

| FOr_nnf formula_nnf formula_nnf

The set Jp has literals, negation of literals, disjunctions, and conjunctions. The conjunc-

tions are only at the top, that means that after a disjunction there is not possible to find

any conjunction. This set is represented by the type formula_cnf:

type formula_cnf =

| FClause_cnf clause_cnf

| FAnd_cnf formula_cnf formula_cnf

type clause_cnf =

| DLiteral pliteral

| DNeg_cnf pliteral

| DOr_cnf clause_cnf clause_cnf

Functions. The function impl_free removes all implications. It is recursively defined

as homomorphic in all cases, except in the implication case where it takes advantage of

the Propositional Logic Law:

A→ B ≡ ¬A∨ B

It converts the constructions of the type formula for those of the type formula_wi and

does recursive calls over the arguments:

31

CHAPTER 5. TRANSFORMATION ALGORITHM TO

CONJUNCTIVE NORMAL FORM

let rec impl_free (phi: formula) : formula_wi

= match phi with

| L phi → L_wi phi

| Neg phi1 → FNeg_wi (impl_free phi1)

| Or phi1 phi2 → FOr_wi (impl_free phi1) (impl_free phi2)

| And phi1 phi2 → FAnd_wi (impl_free phi1) (impl_free phi2)

| Impl phi1 phi2 → FOr_wi (FNeg_wi (impl_free phi1)) (impl_free phi2)

end

The functions nnfc converts formulae to NNF. It is recursively defined over a combination

of constructors: applying the Propositional Logic Law ¬¬A ≡ A the double negations are

eliminated and using the De Morgan Laws, negations of conjunctions become disjunction

of negations and negations of disjunctions become conjunction of negations. The code of

the function is as follows:

let rec nnfc (phi: formula_wi) : formula_nnf

= match phi with

| L_wi phi1 → L_nnf phi1

| FNeg_wi (FNeg_wi phi1) → nnfc phi1

| FNeg_wi (FAnd_wi phi1 phi2) →
FOr_nnf (nnfc (FNeg_wi phi1)) (nnfc (FNeg_wi phi2))

| FNeg_wi (FOr_wi phi1 phi2) →
FAnd_nnf (nnfc (FNeg_wi phi1)) (nnfc (FNeg_wi phi2))

| FNeg_wi (L_wi phi1) → FNeg_nnf (phi1)

| FOr_wi phi1 phi2 → FOr_nnf (nnfc phi1) (nnfc phi2)

| FAnd_wi phi1 phi2 → FAnd_nnf (nnfc phi1) (nnfc phi2)

end

The cnfc function converts formulae from NNF to CNF. It is straightforwardly defined

except in the disjunction case, where it distributes the disjunction by the conjunction

calling the auxiliary function distr.

let rec cnfc (phi: formula_nnf) : formula_cnf

= match phi with

| L_nnf literal → FClause_cnf (DLiteral literal)

| FOr_nnf phi1 phi2 → distr (cnfc phi1) (cnfc phi2)

| FAnd_nnf phi1 phi2 → FAnd_cnf (cnfc phi1) (cnfc phi2)

| FNeg_nnf literal → FClause_cnf (DNeg_cnf literal)

end

The distr function uses the Propositional Logic Law

A∨ (B∧ C) ≡ (A∨ B)∧ (A∨ C),

the code being the following:

32

5.3. HOW TO OBTAIN THE CORRECTNESS

let rec distr (phi1 phi2: formula_cnf) : formula_cnf

= match phi1, phi2 with

| FClause_cnf phi1, FClause_cnf phi2 → FClause_cnf (DOr_cnf phi1 phi2)

| FAnd_cnf phi11 phi12, phi2 →
FAnd_cnf (distr phi11 phi2) (distr phi12 phi2)

| phi1, FAnd_cnf phi21 phi22 →
FAnd_cnf (distr phi1 phi21) (distr phi1 phi22)

end

Lastly, the code of the function (T) composes all of these functions:

let t (phi: formula) : formula_cnf

= cnfc(nnfc(impl_free phi))

The whole implementation is in Appendix A.1.

5.3 How to obtain the correctness

Since the T algorithm is a composition of three functions, the correctness of the algorithm

is the result of the correctness criteria of each of these three functions.

Criteria. The defined types represent exactly the grammar, so the equivalence of the

input and output formula is the only criterion needed to ensure the verification. The

evaluation functions for each type ensures this criterion.

Semantics of formulae. Since the basic criterion of correctness is the logical equivalence

of formulae, we need a function to assign a semantic to them. For that, we created the

eval function:

type valuation = i → t

function eval_pliteral (l: pliteral) (f: valuation) : t

= match l with

| LBottom → bot

| LVar i → f i

end

function eval (phi: formula) (f: valuation) : t

= match phi with

| L e → eval_pliteral e f

| FAnd e1 e2 → eval e1 f /*\ eval e2 f

| FOr e1 e2 → eval e1 f */ eval e2 f

| FImpl e1 e2 → (eval e1 f →* eval e2 f)

| FNeg e → neg (eval e f)

end

33

CHAPTER 5. TRANSFORMATION ALGORITHM TO

CONJUNCTIVE NORMAL FORM

This function takes an argument of type valuation assigning a value of type t2 to each

variable of the formula, receives the formula to evaluate and returns a value of type t.

For the base constructor, if L is a literal, the Boolean value of the variable or the value of

the constant, respectively, are returned. For the remaining constructor cases, the associ-

ated formulae are recursively evaluated and the result translated into the corresponding

operation of our Boolean theory. The evaluation function for the type of formula_wi is

similar.

The evaluation functions for the remaining types are in Appendix A.2.

5.4 Proof of correctness

The proof of correctness consists in demonstrating that each function respects the correct-

ness criteria defined in the previous section. We show, herein, the WhyML code accepted

by Why3 as correct.

Correctness of impl_free. The equivalence of the formulae is ensured using the for-

mula evaluation functions and we use the input formula as a measure to ensure termina-

tion.

let rec impl_free (phi: formula) : formula_wi

variant{ phi }

ensures{ forall v. eval v phi = eval_wi v result }

= ...

Correctness of nnfc. In the proof of correctness it is not possible to use the formula

itself as a measure of termination, since in the case of the distribution of negation by

conjunction or disjunction, constructors are added to the head, making the structural

inductive criterion not applicable. Hence, we define a function that counts the number

of constructors of each formula and use it as termination measure:

function size (phi: formula_wi) : int

= match phi with

| FVar_wi _ | FConst_wi _ → 1

| FNeg_wi phi → 1 + size phi

| FAnd_wi phi1 phi2 | FOr_wi phi1 phi2 → 1 + size phi1 + size phi2

end

To ensure the number of constructors can never be negative, we use the size_nonneg

auxiliary lemma:

2t is our Boolean type

34

5.4. PROOF OF CORRECTNESS

let rec lemma size_nonneg (phi: formula_wi)

variant { phi }

ensures { size phi ≥ 0 }

= match phi with

| FVar_wi _ | FConst_wi _ → ()

| FNeg_wi phi → size_nonneg phi

| FAnd_wi phi1 phi2 | FOr_wi phi1 phi2 →
size_nonneg phi1; size_nonneg phi2

end

Furthermore, with the termination measure defined, we can close the proof of correctness

of the nnfc function:

let rec nnfc (phi: formula_wi)

variant{ size phi }

ensures{ (forall v. eval_wi v phi = eval_nnf v result) }

= ...

Correctness of cnfc. This correctness proof is similar to the previous one:

let rec cnfc (phi: formula_wi)

ensures{ (forall v. eval_nnf v phi = eval_cnf v result) }

variant { phi }

= ...

Since the cnfc function uses the auxiliary function distr, we also need to prove its

correctness. In this correctness proof we use a combination of evaluation functions to

ensure the partial proof and a sum of size functions applied to both arguments to ensure

the total proof:

let rec distr (phi1 phi2: formula_wi)

ensures{ (forall v. ((eval_cnf v phi1 || eval_cnf v phi2) =

eval_cnf v result)) }

variant { size phi1 + size phi2 }

= ...

Correctness of t. With the proofs of correctness of each of the three functions per-

formed, we can now obtain the proof of correctness of the function T:

let t (phi: formula) : formula_cnf

ensures{ (forall v. eval v phi = eval_cnf v result)}

= ...

The whole code of the specification is in Appendix A.3. Using the Why3 session shell

command, one obtains a table with proof times for every sub-goal. This exhaustive result

is not very informative. However, adding all sub-goals times represents a theoretical

35

CHAPTER 5. TRANSFORMATION ALGORITHM TO

CONJUNCTIVE NORMAL FORM

worst case scenario where tasks would be proved sequentially (the real behaviour is in

fact a parallel execution). Nevertheless, we will use this criterion when presenting the

proof time results, as it makes easier a comparison and allow us to present more compact

tables. Table 5.1 shows the time of aggregated proof obligation of the CNF conversion

algorithm. We present the results of CVC4, Alt-Ergo and Z3, however, the last one times

out trying to prove some verification conditions. For the next tables of proof times, we

will only show the results for the provers that validates most of the verification condition.

Proof obligations A
lt

-E
rg

o
2.

2.
0

C
V

C
4

1.
6

Z
3

4.
8.

4

lemma VC for impl_free lemma variant decrease 0.21 0.16 0.14

lemma postcondition 4.42 0.26

lemma VC for nnfc lemma variant decrease 0.09 0.32 0.18

lemma postcondition 0.29 0.15

lemma VC for distr lemma variant decrease 0.06 0.37 0.15

lemma postcondition 0.38 0.24

lemma VC for cnfc lemma variant decrease 0.08 0.25 0.12

lemma postcondition 0.04 0.24

lemma VC for t 0.01 0.07 0.02

Table 5.1: Aggregated proof time of CNF proof obligations.

5.5 Conclusions and Observations

Classical logical algorithms presented as functions to undergraduates can have a very

close functional implementation that is easy to prove correct with a high degree of au-

tomation. The implementation was proved sound with small effort, basically following

from the assertions one naturally associates with the code to prove it correct.

However, undergraduates do not learn this algorithm using grammars. They learn it

with two sets of formulae, the Gp andHp, which increases the complexity of the proof. We

first started following the structure of the algorithm that is present in the slides available

to students. This first work was more complex, but corresponds exactly to the version that

students learn, which may be an added value. Therefore, we present below this version.

Previous implementation and proof of correctness. The implementation is similar to

the one presented in the sections above, but only with the Gp andHp sets, so the signature

of the nnfc, cnfc and distr functions must be according to the sets:

let rec nnfc (phi: formula_wi) : formula_wi = ...

36

5.5. CONCLUSIONS AND OBSERVATIONS

let rec cnfc (phi: formula_wi) : formula_wi = ...

let rec distr (phi1 phi2: formula_wi) : formula_wi = ...

let t: (phi: formula) : formula_wi = ...

Proof of correctness. Only with the type formula_wi it is not possible to ensure the

Normal Negation Form and Conjunctive Normal Form. So to ensure the NNF and CNF,

we create two well-formed predicates. The wf_negation_of_literals predicate ensures

that the negation connective is applied only to literals:

predicate wf_negations_of_literals (f: formula_wi)

= match f with

| FNeg_wi f → (match f with

| FOr_wi _ _ | FAnd_wi _ _ | FNeg_wi _ → false

| _ → wf_negations_of_literals f

end)

| FOr_wi f1 f2

| FAnd_wi f1 f2 →
wf_negations_of_literals f1 ∧ wf_negations_of_literals f2

| FVar_wi _ → true

| FConst_wi _ → true

end

The wf_conjunctions_of_disjunctions predicate ensures that the conjunctions are

only at the top, so after a disjunction it is not possible to find any conjunction:

predicate wf_conjunctions_of_disjunctions (f: formula_wi)

= match f with

| FAnd_wi f1 f2 →
wf_conjunctions_of_disjunctions f1 ∧ wf_conjunctions_of_disjunctions f2

| FOr_wi f1 f2 → wf_disjunctions f1 ∧ wf_disjunctions f2

| FConst_wi _ → true

| FVar_wi _ → true

| FNeg_wi f1 → wf_conjunctions_of_disjunctions f1

end

predicate wf_disjunctions (f: formula_wi)

= match f with

| FAnd_wi _ _ → false

| FOr_wi f1 f2 → wf_disjunctions f1 ∧ wf_disjunctions f2

| FConst_wi _ → true

| FVar_wi _ → true

| FNeg_wi f1 → wf_disjunctions f1

end

37

CHAPTER 5. TRANSFORMATION ALGORITHM TO

CONJUNCTIVE NORMAL FORM

Using the wf_negations_of_literals predicate as postcondition it is possible to ensure

the NNF:

let rec nnfc (phi: formula_wi) : formula_wi

variant { size phi }

ensures { (forall v. eval_wi v phi = eval_wi v result) }

ensures { wf_negations_of_literals result }

= ...

Using the wf_conjunction_of_disjunctions predicate it is possible to ensure the CNF:

let rec cnfc (phi: formula_wi) : formula_wi

requires { wf_negations_of_literals phi }

variant { phi }

ensures { (forall v. eval_wi v phi = eval_wi v result) }

ensures { wf_negations_of_literals result }

ensures { wf_conjunctions_of_disjunctions result }

= ...

let rec distr (phi1 phi2: formula_wi) : formula_wi

requires { wf_negations_of_literals phi1 ∧ wf_negations_of_literals phi2 }

requires { wf_conjunctions_of_disjunctions phi1 ∧
wf_conjunctions_of_disjunctions phi2 }

variant { size phi1 + size phi2 }

ensures { (forall v. eval_wi v (FOr_wi phi1 phi2) = eval_wi v result) }

ensures { wf_negations_of_literals result ∧
wf_conjunctions_of_disjunctions result }

= ...

In this functions we have preconditions since the algorithm is a composition of three

functions, so the input formula must be in NNF for the cnfc function and in NNF and

CNF for the distr.

In the distr function, it is not possible to prove that a disjunction of two formulae in

CNF is effectively a formula in CNF. We must ensure that in a disjunction of two formulae

in CNF, the formulae do not contain the conjunction constructor. To accomplish this, we

use an auxiliary lemma:

lemma aux: forall x. wf_conjunctions_of_disjunctions x ∧
wf_negations_of_literals x ∧ not (exists f1 f2. x = FAnd_wi f1 f2) →
wf_disjunctions x

38

C
h
a
p
t
e
r

6
Transformation Algorithm from

CNF to Horn Clauses

The Horn algorithm [34, 60] is a simple and easy solution to decide in polynomial com-

plexity if a given propositional formula is satisfactory or contradictory. However, the

algorithm only works for a particular set of formulae - the Horn Clauses. Common logic

literature, unfortunately, does little emphasis in the implementation of the transforma-

tion algorithm from CNF to these Horn Clauses, presenting only its definitions. We could

not find any functional presentation of this algorithm. Therefore, this chapter contributes

with a functional presentation, with its implementations and soundness proof.

6.1 Algorithm Definition

A basic Horn clause is a disjunction of literals, where at most one occurs positively. So,

there are only three possibilities for a basic Horn clause:

1. Does not have any positive literal (atomic formula).

2. Does not have any negative literal, being only one positive literal.

3. Does have negative literals and only one positive.

Therefore, it is possible to present any basic Horn Clause as an implication:

1. L ≡ >→ L

2.
∨n
i=1¬Li ≡ (

∧n
i=1Li)→⊥

3.
∨n
i=1¬Li ∨L ≡ (

∧n
i=1Li)→ L

Where L and Li (for all i) are positive literals.

39

CHAPTER 6. TRANSFORMATION ALGORITHM FROM

CNF TO HORN CLAUSES

A propositional formula is a Horn clause if it is a basic conjunction of Horn clauses,

φ =
n∧
i=1

(Ci → Li)

where Li are positive literals and Ci => or Ci =
∧ki
j=1Li,j The following grammar defines

a Horn formula:

ψ ::= µ | ψ ∧ψ (horn_formula)

µ ::= χ→ω (basic_horn_formula)

χ ::=> | α (leftside)

α ::= p | ⊥ | α ∧α (positive)

ω ::= p | ⊥ | > (rightside)

6.2 Functional Presentation of the Algorithm

The algorithm converts to a conjunction of basic Horn clauses, given a specific formula φ

in Conjunctive Normal Form that is defined in the Page 29. The main function is called

hornify and has the following signature:

hornify : f ormula_cnf → horn_f ormula

Precisely, the function traverses each sub-formula of the conjunctions and calls the get-

BasicHorn function:

hornify(φ) ,

hornify(φ1)∧ hornify(φ2), if φ = φ1 ∧φ2

getBasicHorn(φ), if otherwise

The function getBasicHorn converts propositional formulae in CNF without conjunc-

tions (τ) into basic Horn clauses:

getBasicHorn : formula_cnf → basic_horn_formula

getBasicHorn(φ) ,



let (s,p) = hornify_aux (φ, ∅, ∅) in

buildConjunction (s)→ getPositive (p), if φ = φ1 ∨φ2

φ1→⊥, if φ = ¬φ1 and φ1 is a variable

>→ φ1, if φ = φ1 and φ1 is a variable

>→>, if φ = ¬⊥

>→⊥, if φ =⊥

This functions follows the properties presented in Section 6.1 to transform each disjunc-

tion or literal into an implication (basic Horn clause). The main case of the function is

40

6.3. IMPLEMENTATION

when the formula is a disjunction. In this case, the function calls the hornify_aux func-

tion to get all the positive and negative literals into a set, then uses the buildConjunction

function to build the conjunction of the negative literals and the getPositive function

to get the positive literal. In the other cases the transformation is straightforward.

The function hornify_aux goes trought the formula and adds negative literals to the

left set and positive literals to the right set:

hornify_aux : disjunction ∗ set ∗ set→ set ∗ set

hornify_aux(φ,s,p) ,



let (s1,p1) = hornify_aux (φ1, s, p) in

hornify_aux (φ2, s1, p1), if φ = φ1 ∨φ2

(s ∪ {φ1}, p), if φ = ¬φ1

(s, {φ}), if φ is a variable and p = ∅

The buildConjunction function returns a positive literal if the set has only one literal or

constructs a conjunction with all the positive literals in the set:

buildConjunction : set→ leftside

buildConjunction(s) ,

φ, if φ ∈ s and |s| = 1

φ ∧ (buildConjunction (s \ {φ})), if φ ∈ s and |s| > 1

The getPositive functions is responsible for building the right-hand side of the impli-

cation. Given an empty set or a set with only one positive literal, it returns one positive

literal (or ∅ or itself):

getPositive : set→ rightside

getPositive(p) ,

⊥, if p = ∅

φ, if p = {φ}

6.3 Implementation

It is necessary to define the specific formulae types according to the grammar defined in

Section 6.1. The Table 6.1 shows the correspondent Why3 type for each grammar.

41

CHAPTER 6. TRANSFORMATION ALGORITHM FROM

CNF TO HORN CLAUSES

Grammar Name Grammar Why3 Type

horn_clause ψ ::= µ | ψ ∧ψ (1)

basic_horn_clause µ ::= χ→ω (2)

leftside χ ::=> | α (3)

positive α ::= p | ⊥ | α ∧α (4)

rightside ω ::= p | ⊥ | > (5)

Table 6.1: Why3 types according to grammars.

(1) type horn_clause =

| HBasic basic_horn_clause

| HAnd horn_clause horn_clause

(2) type basic_horn_clause =

| BImpl leftside rightside

(3) type leftside =

| LTop

| LPos positive

(4) type positive =

| PLCBottom

| PLCVar ident

| PLCAnd positive positive

(5) type rightside =

| RBottom

| RTop

| RVar ident

Functions. The implementation of the described functions follows the structure of the

mathematical definitions. The main function (hornify) traverses the formula and calls

the getBasicHorn function when the formula is a disjunction (FClause_cnf):

let rec hornify (phi: formula_cnf) : horn_clause

= match phi with

| FClause_cnf phi1 → HBasic (getBasicHorn phi1)

| FAnd_cnf phi1 phi2 → HAnd (hornify phi1) (hornify phi2)

end

The getBasicHorn converts disjunctions to an equivalent implication. The base cases

use the conversion rules previously shown. In the inductive case (when the input formula

42

6.3. IMPLEMENTATION

has disjunction as head operator) we use the auxiliary function hornify_aux (in the next

page) in order to get all the positive and negative literals. This is a partial function, as

by definition of Horn clause, there is at most one positive literal in a clause. Why3, in

contrast of similar proof tools, supports functions with side effects. This comes in handy,

allowing us to traverse each formula a single time: if we find two positive literals, we

raise an exception (using a functional option type). The alternative would be to traverse

it twice, the first to count the number of positive literals and the second to convert. Note

that the hornify_aux function has three arguments: the formula, the set collecting the

negative literals, and a value of the type option (the value None). Then we call the

buildConjunction and getPositive functions to build the implication.

let getBasicHorn (phi: clause_cnf) : basic_horn_clause

= match phi with

| DLiteral (LVar x) → BImpl (LTop) (RVar x)

| DLiteral (LBottom) → BImpl (LTop) (RProp bot)

| DNeg_cnf (LVar x) → BImpl (LPos (PLCVar x)) (RProp bot)

| DNeg_cnf (LBottom) → BImpl (LTop) (RProp top)

| DOr_cnf _ _ → let (s,p) = hornify_aux phi (empty ()) None in

BImpl (buildConjunction s) (getPositive p)

end

The implementation of buildConjunction, in turn, uses an auxiliary function build

that returns a positive literal if the set has only one literal or constructs a conjunction

with all the positive literals in the set. Since we want to extract the code, we use the

applicative sets module (AppSet) from Why3 standard library. This module instead of the

specification pick function, provides an executable function named choose. The function

convertPLtoPLC transform constructors of the type pliteral to the corresponding ones

of the type positive.

let buildConjunction (s: set): leftside

= let rec build (s: set)

= if(is_empty s) then absurd else

if((cardinal s) = 1) then (convertPLtoPLC (choose s)) else

let element = choose s in

PLCAnd (convertPLtoPLC (element)) (build (remove (element) s)) in

LPos (build s)

The getPositive function returns a positive literal: ⊥ if the option is None or x if it

is Some x.

let getPositive (p: option rightside) : rightside

= match p with

| None → RProp bot

| Some x → x

end

43

CHAPTER 6. TRANSFORMATION ALGORITHM FROM

CNF TO HORN CLAUSES

The hornify_aux is a partial function that goes through the disjunction combina-

tions, adds the negative literals to the input set (the literals are added as positive literals

dropping the negative connector) and the positive literal to the option type.

This function, as previously said, can also raise an exception, called MoreThanOnePos-

itive, if there is more than one positive literal in the formula. This exception is an

identifier defined in the hornify module (Appendix B.1). When the disjunction construc-

tor has two positive literals, we raise an exception. If it has one positive and one negative,

we call the processCombination function, that will check if the option is defined and

add the negative to set. When the constructor has at least another disjunction in his

arguments, we recursively call the hornify_aux function.

let rec hornify_aux (phi: clause_cnf) (s: set) (p: option rightside)

: (rs: set, rp: option rightside)

raises{ MoreThanOnePositive }

= match phi with

| DOr_cnf (DLiteral _) (DLiteral _) → raise MoreThanOnePositive

| DOr_cnf (DLiteral pl) (DNeg_cnf nl)

| DOr_cnf (DNeg_cnf nl) (DLiteral pl) → processCombination pl nl s p

| DOr_cnf (DNeg_cnf nl1) (DNeg_cnf nl2) →
((add (convertPLiteralToPL nl1) (add (convertPLiteralToPL nl2) s)), p)

| DOr_cnf (DOr_cnf phi1 phi2) (DLiteral pl)

| DOr_cnf (DLiteral pl) (DOr_cnf phi1 phi2) →
match p with

| None →
hornify_aux (DOr_cnf phi1 phi2) s (Some (convertLiteralToR pl))

| Some _ → raise MoreThanOnePositive

end

| DOr_cnf (DOr_cnf phi1 phi2) (DNeg_cnf nl)

| DOr_cnf (DNeg_cnf nl) (DOr_cnf phi1 phi2) →
hornify_aux (DOr_cnf phi1 phi2) (add (convertPLiteralToPL nl) s) p

| DOr_cnf phi1 phi2 →
let (s1,p1) = hornify_aux phi1 s p in hornify_aux phi2 s1 p1

| _ → absurd

end

The processCombination function analyses the case when the disjunction construc-

tor has one positive and one “negative” literal. If the input option p is None then the

addLiterals function is called, otherwise the MoreThanOnePositive exception is raised.

let processCombination (pl: pliteral) (nl: pliteral) (s: set)

(p: option rightside) : (rs: set, rp: option rightside)

raises{ MoreThanOnePositive }

= match p with

| None → addLiterals pl nl s p

| Some _ → raise MoreThanOnePositive

end

44

6.4. PROOF OF CORRECTNESS

The addLiterals function inserts the “negative” literal into the set and defines the op-

tion rp as Some x, where x is the positive literal.

let addLiterals (pl: pliteral) (nl: pliteral) (s: set) (p: option rightside)

: (rs: set, rp: option rightside)

= match pl with

| LBottom → let rbottom = Some (RProp bot) in

match nl with

| LBottom → ((add (Prop_pl bot) s), rbottom)

| LVar x → ((add (Var_pl x) s), rbottom)

end

| LVar x → let rvar = Some (RVar x) in

match nl with

| LBottom → ((add (Prop_pl bot) s), rvar)

| LVar x → ((add (Var_pl x) s), rvar)

end

end

The whole code is given in Appendix B.1

6.4 Proof of correctness

Since the defined types represent exactly the grammar of the output of the algorithm, the

equivalence of the input and output formula is the only criterion needed to ensure that

the implementation is sound. The valuation functions for each type ensures this criterion

(Apendix B.2).

Less trivial cases. In some cases, especially when the function has more than one ar-

gument and pairs in the output, the equivalence can be a little tricky. A combination of

valuation functions is needed to resolve these cases. In the hornify_aux function it is

need to ensure that:

1. the output set has at least one literal (is not empty)

2. phi ∨ (
∨n
i=1¬Ei) ∨ p ≡ (

∨n
i=1¬Ri) ∨ rp

3. phi ∨ (
∨n
i=1¬Ei) ∨ p ≡ (

∧n
i=1Ri)→ rp,

where phi is a disjunction, Ei are the elements of the input set, p is the input option, Ri
are the elements of the output set and rp the output option.

This function only receives disjunctions; the other cases are absurd. Given the need to

prove the absurd cases, and since the clause_cnf type contains non-disjunction construc-

tors, we must ensure that the input formula (phi) is indeed a disjunction. This obligation

is ensured by adding a precondition in the specification of the function.

45

CHAPTER 6. TRANSFORMATION ALGORITHM FROM

CNF TO HORN CLAUSES

let rec hornify_aux (phi: clause_cnf) (s: set) (p: option rightside) :

(rs: set, rp: option rightside)

requires{ exists x y. phi = DOr_cnf x y }

ensures{ not is_empty rs }

ensures{ forall f. eval_domain phi s p f = eval_codomain rs rp f }

ensures{ forall f. eval_domain phi s p f = ((eval_positive rs f) →*

(eval_optionrightside rp f)) }

variant{ phi }

...

= match phi with

...

| _ → absurd

end

The eval_domain evaluates the domain of the function (left side of the equality of prop-

erty 2 and 3) and the eval_codomain the codomain (right-hand side of the equality of

property 2):

function eval_domain (phi: clause_cnf) (s: set) (p: option rightside)

(f: i → t) : t

= eval_disj_cnf phi f */ eval_negative s f */ eval_optionrightside p f

function eval_codomain (s: set) (p: option rightside) (f: i → t) : t

= eval_negative s f */ eval_optionrightside p f

In the processCombination and addLiterals functions one needs to ensure, once again,

that the output set is not empty and that the domain is equivalent to the codomain. This

obligation can be translated into the following property

pl ∨¬nl ∨ (
n∨
i=1

¬Ei)∨ p ≡ (
n∨
i=1

¬Ri)∨ rp,

where pl and nl are the positive literal and negative literal, respectively, Ei are the ele-

ments of the input set, p is the input option, Ri are the elements of the output set and rp

the output option. The specification is the following one:

let processCombination (pl: pliteral) (nl: pliteral) (s: set)

p: option rightside) : (rs: set, rp: option rightside)

raises{ MoreThanOnePositive }

ensures{ (not is_empty rs) }

ensures { forall f.

(eval_literal pl f */ (neg (eval_literal nl f)) */

eval_negative s f */ eval_optionrightside p f) =

(eval_negative rs f */ eval_optionrightside rp f) }

= ...

46

6.5. CONCLUSIONS AND OBSERVATIONS

The full specification is in Appendix B.3 and Table 6.2 shows the proof time of each

proof obligation of our Horn Clause conversion algorithm. Once again, the times are an

aggregation of every sub-goal proof time.

Proof obligations C
V

C
4

1.
6

lemma VC for convertLiteralToR 0.09

lemma VC for addLiterals 1.08

lemma VC for processCombination 0.05

lemma VC for hornify_aux lemma precondition 0.36

lemma postcondition 2.53

lemma variant decrease 0.60

lemma unreachable point 0.09

lemma VC for buildConjunction lemma precondition 0.23

lemma variant decrease 0.11

lemma postcondition 0.35

lemma VC for getPositive 0.09

lemma VC for getBasicHorn lemma postcondition 1.47

lemma precondition 0.06

lemma VC for hornify 0.13

Table 6.2: Aggregated proof time of Hornify proof obligations

6.5 Conclusions and Observations

We present herein a new formulation of the transformation from CNF formulae into Horn

clauses. It is presented as recursive functions, being clear, readable, rigorous and ideal to

undergraduate logic courses. However, even if the presentation is clear and fits on one

page, the implementation and verification are not trivial.

The verification process did not escape the rule of only ensuring the equivalence of

the domain and codomain evaluations. However, the domain and codomain presented

in this chapter usually have more than one argument, turning the equivalence not trivial.

We explicitly define the properties of equivalence and traduced it to a post-condition in

Why3.

The theories of sets presented in Section 4.3 and 4.2 had a major rule in this proof. The

type set of Why3 does not provides enough information, these hints gave them enough

to again naturally process the proof.

47

C
h
a
p
t
e
r

7
Towards Step-by-Step Execution

The ability to execute in step-by-step or even to rewind or step back computations is

fundamental for programmers, as it permits the inspection of the intermediate values of

computations. Moreover, forward and backwards stepwise execution provides a better

understanding of the code under inspection. Previous work, also within the scope of the

FACTOR project (“Rewinding functions through CPS”), shows how to support tracing

functionalities in continuation-passing style programming [28]. To make use of the func-

tionalities provide by the mentioned work, we developed versions of our implementations

with explicit stack structure. Henceforth, this chapter presents the CPS/Defunctionaliza-

tion transformation of the implementation listed in Chapter 5.

This transformation and its verification can be made automatically [63]. However, this

work was released after the manual transformation listed in this chapter. The algorithm

in Chapter 6 and future implementations will later be automatically transformed into

CPS.

7.1 Continuation-Passing Style

As mentioned in Section 3.3, Continuation-Passing Style (CPS) is a programming style

where the control is passed explicitly in the form of a continuation. We obtain the CPS

version of the functions in a similar way to the process presented in Section 3.3. So, using

the process we have the following code for the CPS version of the impl_free function:

49

CHAPTER 7. TOWARDS STEP-BY-STEP EXECUTION

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a) : ’a

= match phi with

| Prop t → if t = bot then k (L_wi (LBottom))

else k (FNeg_wi (L_wi LBottom))

| Var i → k (L_wi (LVar i))

| Neg phi1 → impl_free_cps phi1 (fun processed_phi1 →
k (FNeg_wi processed_phi1))

| Or phi1 phi2 → impl_free_cps phi1 (fun impl_left →
impl_free_cps phi2 (fun impl_right →
k (FOr_wi impl_left impl_right)))

| And phi1 phi2 → impl_free_cps phi1 (fun impl_left →
impl_free_cps phi2 (fun impl_right →

k (FAnd_wi impl_left impl_right)))

| Impl phi1 phi2 → impl_free_cps phi1 (fun impl_left →
impl_free_cps phi2 (fun impl_right →
k (FOr_wi (FNeg_wi impl_left) impl_right)))

end

let impl_free_main (phi: formula) : formula_wi

= impl_free_cps phi (fun x → x)

The code for the remaining function is in Appendix A.4).

Correctness criteria. One interesting aspect of the proof of correctness of the functions

in CPS is the use of the corresponding function in direct-style as specification, since these

ones are pure and total. Briefly, we simply assure that the result of the CPS functions is

equivalent to the result of the functions in direct style.

For the impl_free function in CPS, it is enough to ensure that the result is equivalent

to the result of the direct-style impl_free function applied to the continuation:

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a) : ’a

variant { phi }

ensures { result = k (impl_free phi) }

= ...

The specification of the function in direct style is then also applied to the function main,

responsible for calling the CPS functions with the identity function as continuation:

let impl_free_main (phi: formula) : formula_wi

ensures { forall v. eval v phi = eval_wi v result }

= ...

The specifications of the nnfc and cnfc functions in CPS are similar and are presented in

Appendix A.5. The proof time for each generated proof obligation can be observed in the

Table 7.1. Once again, if they were executed sequentially.

50

7.1. CONTINUATION-PASSING STYLE

Proof obligations A
lt

-E
rg

o
2.

2.
0

C
V

C
4

1.
6

Z
3

4.
8.

4

lemma VC for impl_free_cps lemma variant decrease 0.21 0.50
lemma postcondition 0.16 0.41 0.15

lemma VC for impl_free_main 0.01 0.05 0.02
lemma VC for nnfc_cps 0.05 0.46
lemma VC for nnfc_main 0.01 0.04 0.03
lemma VC for distr_cps 0.21 0.15 0.22
lemma VC for distr_main 0.01 0.06 0.03
lemma VC for cnfc_cps 0.24 0.77 0.22
lemma VC for cnfc_main 0.01 0.05 0.02
lemma VC for t_main 0.01 0.05 0.02

Table 7.1: Aggregated proof time of CNF-CPS proof obligations.

Observations. This implementation, uses types that represent grammars but, as men-

tioned in Section 5.5, undergraduates learn it only with two sets of formulae. Using these

types, most correctness criterion are “automatically” ensured, because the functions out-

put is tailored according to its properties. We only need to ensure the equivalence of

the evaluation of the domain and codomain. However, with two sets of formulae we

need to introduce well-formed predicates to ensure certain criteria. For example, the

wf_negations_of_literals well-formed predicate ensures that a formula is in NNF.

These well-formed predicates increased the complexity of the CPS proof, as proof

obligations are generated concerning the validity of pre-conditions whenever a recursive

call is made within a continuation. In order to prove such a proof obligation, we need to

specify the nature of the continuation arguments. Thus, we encapsulate the well-formed

predicates into new types (invariant types). The following code represents the invariant

type with the wf_negations_of_literals well-formed predicated encapsulated:

type nnfc_type = { nnfc_formula : formula_wi }

invariant { wf_negations_of_literals nnfc_formula }

by{ nnfc_formula = FConst_wi true }

With this, the return type of the functions has been changed to an invariant type rather

than a normal type. So, the post-conditions now involves the comparison of two invariant

types, which raises some interesting challenges.

Difficulties to achieve a proof. Comparing two invariant types involves providing them

a witness, i.e., values with the concerned type; only then it is possible to prove that two

values of the same type respect the invariant. However, as the invariant type in Why3

is an opaque type, having only access to its projections, it is not possible to construct an

51

CHAPTER 7. TOWARDS STEP-BY-STEP EXECUTION

inhabitant of this type in the logic, thus making it impossible to compare them. This

lemma translates such a behaviour:

lemma types: forall x y. x.nnfc_formula = y.nnfc_formula → x = y

It is not possible to prove this lemma because having only access to record projections

can not ensure that, in this case, the field nnfc_formula is the only field of this record

type. Given this limitation of Why3 [2], which in this case precludes the proof of the

post-condition, we have tried to compare the formula of each type with an extensional

equality predicate (==) and use this predicate as post-condition instead of polymorphic

structural equality (=).

predicate (==) (t1 t2: nnfc_type) = t1.nnfc_formula = t2.nnfc_formula

Even with extensional equality, it was not possible to complete the proof. This is due

to the fact that for the base cases, given the application to the continuation, we always

come across with comparison of records and in the other cases it is not possible to specify

the functions of continuation in the recursive calls. This lack of success led to the search

for other approaches that would, eventually, achieve the same advantages as the CPS

transformation.

What is the problem with CPS?. The transformation in CPS always adds a function as an

argument, thus passing to a higher-order function. Since Why3 is a platform that, for

reasons of automation, operates on a first-order language, the solution is to “go back” to

first-order. The defunctionalization technique emerged as a possible approach.

7.2 Defunctionalization

Defunctionalization is a program transformation technique to convert high-order pro-

grams into first-order ones [62]. It produces an evaluator, a version close to a first-order

abstract machine [3].

Transformation process. Following the process presented in Section 3.4, a defunction-

alization consists of a “mechanical” transformation in two steps:

1. Get a first order representation of the function continuations and replace the con-

tinuations with this new representation.

2. Generate a new function (apply) which replaces the applications of functions in the

original program.

Applying this process to the impl_free function in CPS lead us to the following repre-

sentation for the function continuations:

52

7.2. DEFUNCTIONALIZATION

type impl_kont =

| KImpl_Id

| KImpl_Neg impl_kont

| KImpl_OrLeft impl_kont formula

| KImpl_OrRight impl_kont formula_wi

| KImpl_AndLeft impl_kont formula

| KImpl_AndRight impl_kont formula_wi

| KImpl_ImplLeft impl_kont formula

| KImpl_ImplRight impl_kont formula_wi

The constructor KImpl_id represents the identity function, and the constructor KImpl_Neg

represents the continuation of the constructor FNeg_wi. The remaining cases contain two

continuation functions, so two constructors are created, one left and one right. We

chose to use the left and right nomenclatures because this represents the natural order

of the formula in the abstract syntax tree.

We now replace the continuations with this new representation of the function con-

tinuations:

let rec impl_free_defun (phi: formula) (k: impl_kont) : formula_wi

= match phi with

...

| Neg phi1 → impl_free_defun phi1 (KImpl_Neg k)

| Or phi1 phi2 → impl_free_defun phi1 (KImpl_OrLeft k phi2)

| And phi1 phi2 → impl_free_defun phi1 (KImpl_AndLeft k phi2)

| Impl phi1 phi2 → impl_free_defun phi1 (KImpl_ImplLeft k phi2)

end

Then we introduce the apply function, which replaces the applications of the contin-

uation. This function is mutually recursive with the impl_free_defun. The identity

constructor simply returns the formula argument, where the KImpl_Neg constructor re-

cursively calls the impl_apply function with its argument k and the formula already

processed (without implications) applied to the FNeg_wi constructor. For the remaining

cases:

• If it is a Left “continuation” constructor, we call the impl_free_defun function

with phi2 (the right side formula of the corresponding head constructor); and the

Right “continuation” constructor, applied to k – the continuation argument of

the left constructor – and to impl_left – the left side already processed (without

implications).

• If it is a Right “continuation” constructor, we recursively call the impl_apply func-

tion with two arguments: the application k and the result of applying the corre-

sponding formula constructor to the impl_left and impl_right.

53

CHAPTER 7. TOWARDS STEP-BY-STEP EXECUTION

with impl_apply (k: impl_kont) (arg: formula_wi) : formula_wi = match k with

| KImpl_Id → let x = arg in x

| KImpl_Neg k → let processed_phi1 = arg in

impl_apply k (FNeg_wi processed_phi1)

| KImpl_OrLeft k phi2 → let impl_left = arg in

impl_free_defun phi2 (KImpl_OrRight k impl_left)

| KImpl_OrRight k impl_left → let impl_right = arg in

impl_apply k (FOr_wi impl_left impl_right)

| KImpl_AndLeft k phi2 → let impl_left = arg in

impl_free_defun phi2 (KImpl_AndRight k impl_left)

| KImpl_AndRight k impl_left → let impl_right = arg in

impl_apply k (FAnd_wi impl_left impl_right)

| KImpl_ImplLeft k phi2 → let impl_left = arg in

impl_free_defun phi2 (KImpl_ImplRight k impl_left)

| KImpl_ImplRight k impl_left → let impl_right = arg in

impl_apply k (FOr_wi (FNeg_wi impl_left) impl_right)

end

Finally, we replace the applications of the continuation with the impl_apply function:

let rec impl_free_defun (phi: formula) (k: impl_kont) : formula_wi

= match phi with

| Prop t → if t = bot then impl_apply k (L_wi (LBottom))

else impl_apply k (FNeg_wi (L_wi LBottom))

| Var i → impl_apply k (L_wi (LVar i))

...

end

The impl_free_defun is the result of the defunctionalization transformation of the

impl_free_cps function.

The result of the application of the defunctionalization transformation to the remain-

ing functions of the T algorithm in CPS is given in Appendix A.6.

Proof of correctness. The defunctionalized program specification is the same as the

original program. However, given the existence of an additional function generated by

the defunctionalization process (the apply function), a specification must be provided.

Since the apply function simulates the application of a function to its argument, the

only specification we can give it is that its post-condition is the post-condition of the

function k [57].

To be able to use the direct-style functions as a specification, we have created a post

predicate that gathers the post-conditions of the direct-style function. As for the apply

function, such predicate performs case analysis on the continuation type; and for each

constructor, we copy the post-condition present in the corresponding abstraction [57].

For example, the impl_free_cps function, has the following specification:

54

7.2. DEFUNCTIONALIZATION

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a) : ’a

ensures { result = k (impl_free phi) }

= ...

However, if we use the post predicate, we can change the post-condition to:

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a) : ’a

ensures { post k (impl_free phi) result }

= ...

This post-condition establish a relationship between the value passed to the continuation

k (a formula without implications) and the output (result). Following this methodology,

we can, also, specify the anonymous functions used inside impl_free_cps function. The

post-condition of the constructor Neg, compares processed_phi1 applied to FNeg_wi

with the result formula; this comparison depends on the continuation k. At the top level,

the initial continuation is the identify function, hence the result will be the expected one.

The remaining cases follows the same pattern.

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a) : ’a

ensures{ post k (impl_free phi) result}

= match phi with

| Prop t → if t = bot then k (L_wi (LBottom)) else k (FNeg_wi (L_wi LBottom))

| Var i → k (L_wi (LVar i))

| Neg phi1 →
impl_free_cps phi1 (fun processed_phi1 →
ensures { post k (KNeg_wi processed_phi1) result }

k (FNeg_wi processed_phi1))

| Or phi1 phi2 →
impl_free_cps phi1 (fun impl_left →
ensures { post k (FOr_wi impl_left (impl_free phi2)) result }

impl_free_cps phi2 (fun impl_right →
ensures { post k (FOr_wi impl_left impl_right) result }

k (FOr_wi impl_left impl_right)))

| And phi1 phi2 →
impl_free_cps phi1 (fun impl_left →
ensures { post k (FAnd_wi impl_left (impl_free phi2)) result }

impl_free_cps phi2 (fun impl_right →
ensures { post k (FAnd_wi impl_left impl_right) result }

k (FAnd_wi impl_left impl_right)))

| Impl phi1 phi2 →
impl_free_cps phi1 (fun impl_left →
ensures { post k (FOr_wi (FNeg_wi impl_left) (impl_free phi2)) result }

impl_free_cps phi2 (fun impl_right →
ensures { post k (FOr_wi (FNeg_wi impl_left) impl_right) result }

k (FOr_wi (FNeg_wi impl_left) impl_right)))

end

55

CHAPTER 7. TOWARDS STEP-BY-STEP EXECUTION

The post predicate, used in the proof of our defunctionalization version, gathers all of

these anonymous function specifications according to its corresponding constructor. The

applications of k are similar to the ones of the apply function, but, instead of defining

the right-side “continuation” constructor, we call the direct-style impl_free function.

predicate impl_post (k: impl_kont) (arg result: formula_wi)

= match k with

| KImpl_Id → let x = arg in x = result

| KImpl_Neg k → let processed_phi1 = arg in

impl_post k (FNeg_wi processed_phi1) result

| KImpl_OrLeft k phi2 → let impl_left = arg in

impl_post k (FOr_wi impl_left (impl_free phi2)) result

| KImpl_OrRight k impl_left → let impl_right = arg in

impl_post k (FOr_wi impl_left impl_right) result

| KImpl_AndLeft k phi2 → let impl_left = arg in

impl_post k (FAnd_wi impl_left (impl_free phi2)) result

| KImpl_AndRight k impl_left → let impl_right = arg in

impl_post k (FAnd_wi impl_left impl_right) result

| KImpl_ImplLeft k phi2 → let impl_left = arg in

impl_post k (FOr_wi (FNeg_wi impl_left) (impl_free phi2)) result

| KImpl_ImplRight k impl_left → let impl_right = arg in

impl_post k (FOr_wi (FNeg_wi impl_left) impl_right) result

end

Finally, we use the impl_post predicate to specify the impl_free defunctionalized func-

tion:

let rec impl_free_desf_cps (phi: formula) (k: impl_kont) : formula_wi

ensures{impl_post k (impl_free phi) result}

= ...

with impl_apply (phi: formula_wi) (k: impl_kont) : formula_wi

ensures{impl_post k phi result}

= ...

The proofs of the nnfc and cnfc defunctionalized functions are similar to the proof of

the impl_free function, being the code in Appendix A.7.

Results. The proof of correctness of the defunctionalized version of the T algorithm is

naturally processed by Why3, with each proof objective being proved in less than one

second as shown in Table 7.2.

56

7.3. OBSERVATIONS

Proof obligations A
lt

-E
rg

o
2.

2.
0

C
V

C
4

1.
6

lemma VC for impl_free_defun 0.16 0.17

lemma VC for impl_apply 0.04 0.14

lemma VC for impl_defun_main 0.02 0.07

lemma VC for nnfc_defun 7.37 0.20

lemma VC for nnfc_apply 0.05 0.17

lemma VC for nnfc_defun_main 0.02 0.08

lemma VC for distr_defun 0.25 0.14

lemma VC for distr_apply 0.02 0.12

lemma VC for distr_defun_main 0.02 0.09

lemma VC for cnfc_defun 0.03 0.12

lemma VC for cnfc_apply 0.10 0.12

lemma VC for cnfc_defun_main 0.02 0.08

lemma VC for t 0.02 0.10

Table 7.2: Proof time of each defunctionalization proof obligation

7.3 Observations

The CPS and Defunctionalization techniques produces code with explicit stack structure,

since each function call return a function (continuation). “Rewinding functions through

CPS” contributes with a general solution to add trace and rewind functionalities to CPS

programs [28].

The proofs were straightforward. However, Why3 operates on a first-order and the

CPS transformation passes the program to a higher-order. In the Section 7.1 we showed

how this can raise difficulties regarding its proof. The solution passes to have a version

with an explicit stack structure but in a first-order language. This is obtained with the

defunctionalization technique.

57

C
h
a
p
t
e
r

8
Conclusions

The objective of this dissertation is to contribute to the development of pedagogical

material to support Computational Logic courses, providing verified implementations

of conversion algorithms to Conjunctive Normal Form and Horn Clauses. The focus of

this work was that the implementation and verification effort should be adequate for

undergraduate students.

The work presented shows that functional languages such as OCaml allow for imple-

mentations close to mathematical definitions without sacrificing clarity and rigour when

presenting algorithms. This is adequate to be pedagogically used as an aid to the study

and understanding of algorithms.

The proofs of these implementations are concise. For most functions, we ensure

that the evaluation of the domain of our functions is equivalent to the evaluation of the

codomain. Since we defined the theories before with all the properties needed, the proofs

were clear and naturally processed. This reinforces the conclusion that it is feasible to

show to students correctness proofs of the implementations.

In Chapter 7, given the importance of step-by-step executions when learning algo-

rithms, we presented the CPS and Defunctionalization transformations of the conversion

algorithm to CNF. These techniques permits the full control over program flow, allow-

ing to, in the future, introduce a mechanism that can stop and resume the execution.

The CPS transformation adds a function (continuation) as argument, thus turning it an

higher-order function. However, in Why3 it is not possible to specify the nature of the

continuation arguments, and Why3 also has limitations regarding the comparison of in-

variant types, which hampers the verification process. The defunctionalization technique

produces a close version of a first-order abstract machine.

The transformations were manually made following the corresponding mechanical

steps. It was straightforward but, in a more complex function, it can be a tedious process

59

CHAPTER 8. CONCLUSIONS

(imagine, for example, applying the transformation to the hornify_aux function). It

is more efficient to use tools and extensions to do it automatically. In the Section 3.3,

we mentioned a extension developed also within the scope of the FACTOR project, that

uses technologies to modify code and syntactic expressions to automatically transform

functions into CPS. The idea is to run this extension for the transformation algorithm

from CNF to Horn Clauses, as for further implementations.

This dissertation presents a successful proof of concept of formally verified bug-free

implementations of (logical) algorithms. Every correct implementation and its verifica-

tion will be incorporated in a library that will be available to students. Implementing and

verifying algorithms increases their understanding and also slowly exposes students to

formal methods. Developing fully bug-free programs is a dream for every programmer;

we believe this a modest contribution towards it.

Future work. Notwithstanding the possibilities of expansion of this proof of concept,

in the short term, we believe it is more important to:

1. Implement the Horn algorithm and perform its correction.

2. Implement the step-by-step execution.

3. Apply this approach to other algorithms of the Computational Logic courses, namely

to the resolution algorithm.

However, in the long term, there are many paths this work can follow. For example, to

apply this approach to other algorithms of the Computational Logic course, or to expand

this approach to algorithms of other courses. It would be useful to create a web-tool

with the step-by-step execution, that would allow students to run the algorithms with a

certain input and follow each step of them. Moreover, the web-tool could, according to

some implementation properties, ask students to specify each function, and then provide

feedback on the correctness of the solutions submitted.

That’s one small step for man, one giant leap for mankind.
Neil Armstrong

60

Bibliography

[1] W. Ackermann. “Frederic Brenton Fitch. Symbolic logic. An introduction.” In:

Journal of Symbolic Logic 17.4 (1952), 266–268. doi: 10.2307/2266614.

[2] Add injectivity for type invariant (#287) · Why3 Issues. url: https://gitlab.inria.

fr/why3/why3/issues/287.

[3] M. S. Ager, D. Biernacki, O. Danvy, and J. Midtgaard. “A Functional Correspon-

dence Between Evaluators and Abstract Machines.” In: Proceedings of the 5th ACM
SIGPLAN International Conference on Principles and Practice of Declaritive Program-
ming. ACM, 2003. doi: 10.1145/888251.888254.

[4] J. Aldrich. Lecture Notes: Hoare Logic. url: https://www.cs.cmu.edu/~aldrich/

courses/654-sp07/notes/3-hoare-notes.pdf.

[5] J. B. Almeida, M. J. Frade, J. S. Pinto, and S. M. d. Sousa. Rigorous Software Develop-
ment: An Introduction to Program Verification. 1st Edition. Undergraduate Topics in

Computer Science. Springer, 2011. doi: 10.1007/978-0-85729-018-2.

[6] C. Amaral, M. Florido, and V. Santos Costa. “PrologCheck – Property-Based Testing

in Prolog.” In: Functional and Logic Programming. Vol. 8475. Lecture Notes in

Computer Science. Springer, 2014, pp. 1–17. doi: 10.1007/978-3-319-07151-

0_1.

[7] A. W. Appel. Compiling with continuations. Cambridge University Press, 2006.

[8] D. Barker-Plummer, J. Barwise, and J. Etchemendy. Tarski’s World: Revised and
Expanded. Center for the Study of Language and Information, 2007.

[9] D. Barker-Plummer, J. Barwise, and J. Etchemendy. Language, Proof, and Logic:
Second Edition. 2nd Edition. Center for the Study of Language and Information,

2011.

[10] B. Barras, S. Boutin, C. Cornes, J. Courant, J.-C. Filliatre, E. Gimenez, H. Herbelin,

G. Huet, C. Munoz, C. Murthy, et al. The Coq proof assistant reference manual:
Version 6.1. 1997.

[11] C. Barrett and C. Tinelli. “Satisfiability Modulo Theories.” In: Handbook of Model
Checking. Springer, 2018, pp. 305–343. doi: 10.1007/978-3-319-10575-8_11.

61

https://doi.org/10.2307/2266614
https://gitlab.inria.fr/why3/why3/issues/287
https://gitlab.inria.fr/why3/why3/issues/287
https://doi.org/10.1145/888251.888254
https://www.cs.cmu.edu/~aldrich/courses/654-sp07/notes/3-hoare-notes.pdf
https://www.cs.cmu.edu/~aldrich/courses/654-sp07/notes/3-hoare-notes.pdf
https://doi.org/10.1007/978-0-85729-018-2
https://doi.org/10.1007/978-3-319-07151-0_1
https://doi.org/10.1007/978-3-319-07151-0_1
https://doi.org/10.1007/978-3-319-10575-8_11

BIBLIOGRAPHY

[12] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King, A. Reynolds,

and C. Tinelli. “CVC4.” In: Proceedings of the 23rd International Conference on Com-
puter Aided Verification. Vol. 6806. Lecture Notes in Computer Science. Springer,

2011, pp. 171–177.

[13] M. Ben-Ari. Mathematical Logic for Computer Science, 3rd Edition. Springer, 2012.

doi: 10.1007/978-1-4471-4129-7.

[14] N. L. Biggs. Matemática Discreta. 1st Edition. Oxford University Press, 2002.

[15] F. Bobot, S. Conchon, E. Contejean, M. Iguernelala, S. Lescuyer, and A. Mebsout.

The Alt-Ergo automated theorem prover. http://alt-ergo.lri.fr, 2008.

[16] F. Bobot, J.-C. Filliâtre, C. Marché, and A. Paskevich. “Why3: Shepherd Your Herd

of Provers.” In: Boogie 2011: First International Workshop on Intermediate Verification
Languages. 2011, pp. 53–64. url: https://hal.inria.fr/hal-00790310.

[17] Boole Manual. url: https://ggweb.gradegrinder.net/support/manual/boole.

[18] A. Bove, P. Dybjer, and U. Norell. “A Brief Overview of Agda – A Functional Lan-

guage with Dependent Types.” In: Theorem Proving in Higher Order Logics. Vol. 5674.

Lectures Notes in Computer Science. Springer, 2009, pp. 73–78.

[19] D. M. Cardoso. Matemática Discreta. 1st Edition. Escolar Editora, 2008.

[20] G. Chartrand and O. Oellermann. Applied and Algorithmic Graph Theory. Interna-

tional series in pure and applied mathematics. McGraw-Hill, 1993.

[21] R. Chen, C. Cohen, J. Lévy, S. Merz, and L. Théry. Formal Proofs of Tarjan’s Algorithm
in Why3, Coq, and Isabelle. 2018. arXiv: 1810.11979.

[22] A. Cortesi, B. Le Charlier, and S. Rossi. “Specification-Based Automatic Verification

of Prolog Programs.” In: Logic Program Synthesis and Transformation. Vol. 1207.

Lecture Notes in Computer Science. Springer, 1997, pp. 38–57. doi: 10.1007/3-

540-62718-9_3.

[23] A. CS2013. Computer Science Curricula 2013. Curriculum Guidelines for Undergradu-
ate Degree Programs in Computer Science. Joint Task Force on Computing Curricula.,

2013. url: https://www.acm.org/binaries/content/assets/education/

cs2013_web_final.pdf.

[24] D. van Dalen. Logic and Structure. Universitext. Springer, 2013.

[25] E. W. Dijkstra. “Guarded Commands, Nondeterminacy and Formal Derivation of

Programs.” In: Commun. ACM 18.8 (1975), pp. 453–457.

[26] H. B. Enderton. A mathematical introduction to logic. Academic Press, 1972.

[27] H. Geuvers. “Proof assistants: History, ideas and future.” In: Sadhana 34.1 (2009),

pp. 3–25. doi: 10.1007/s12046-009-0001-5.

[28] M. Giunti. Rewinding functions through CPS. 2019. url: https://releaselab.

gitlab.io/factor/pdfs/rewind_exp_report.pdf.

62

https://doi.org/10.1007/978-1-4471-4129-7
https://hal.inria.fr/hal-00790310
https://ggweb.gradegrinder.net/support/manual/boole
https://arxiv.org/abs/1810.11979
https://doi.org/10.1007/3-540-62718-9_3
https://doi.org/10.1007/3-540-62718-9_3
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://www.acm.org/binaries/content/assets/education/cs2013_web_final.pdf
https://doi.org/10.1007/s12046-009-0001-5
https://releaselab.gitlab.io/factor/pdfs/rewind_exp_report.pdf
https://releaselab.gitlab.io/factor/pdfs/rewind_exp_report.pdf

BIBLIOGRAPHY

[29] E. G. Goodaire and M. M. Parmenter. Discrete Mathematics with Graph Theory. 1st

Edition. Prentice Hall, 1997.

[30] R. L. Graham, D. E. Knuth, and O. Patashnik. Concrete Mathematics: A Foundation
for Computer Science. Addison-Wesley Longman Publishing Co., Inc., 1989.

[31] L. Hamel. “Formal Methods : A First Introduction using Prolog to specify Pro-

gramming Language Semantics.” In: Proceedings of the International Conference on
Foundations of Computer Science. 2016, pp. 70–76.

[32] A. G. Hamilton. Logic for mathematicians. Cambridge University Press, 1988.

[33] C. A. R. Hoare. “An Axiomatic Basis for Computer Programming.” In: Commun.
ACM 26 (1983), pp. 53–56. doi: 10.1145/357980.358001.

[34] A. Horn. “On sentences which are true of direct unions of algebras.” In: Journal of
Symbolic Logic 16.1 (1951), 14–21. doi: 10.2307/2268661.

[35] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning About
Systems. Cambridge University Press, 2004.

[36] M. Huth and M. D. Ryan. Logic in computer science - modelling and reasoning about
systems. 2nd Edition. Cambridge University Press, 2004.

[37] Informatics Degree - University of Algarve. 2019. url: https://www.ualg.pt/en/

curso/1478.

[38] B. Jacobs, J. Smans, P. Philippaerts, F. Vogels, W. Penninckx, and F. Piessens. “Veri-

Fast: A Powerful, Sound, Predictable, Fast Verifier for C and Java.” In: NASA Formal
Methods. Vol. 6617. Lecture Notes in Computer Science. Springer, 2011, pp. 41–55.

[39] K. R. M. Leino. “Dafny: An Automatic Program Verifier for Functional Correct-

ness.” In: Logic for Programming, Artificial Intelligence, and Reasoning. Ed. by E. M.

Clarke and A. Voronkov. Vol. 6355. Lecture Notes in Computer Science. Springer,

2010, pp. 348–370.

[40] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Rémy, and J. Vouillon. The OCaml
system release 4.07: Documentation and user’s manual. Intern report. Inria, 2018.

url: https://hal.inria.fr/hal-00930213.

[41] F. Lindblad and M. Benke. “A Tool for Automated Theorem Proving in Agda.”

In: Types for Proofs and Programs. Vol. 3839. Lecture Notes in Computer Science.

Springer, 2006, pp. 154–169. doi: 10.1007/11617990_10.

[42] J.-L. Lions, L. Luebeck, J.-L. Fauquembergue, G. Kahn, W. Kubbat, S. Levedag,

L. Mazzini, D. Merle, and C. O’Halloran. Ariane 5 flight 501 failure report by the
inquiry board. European space agency Paris, 1996. url: http://zoo.cs.yale.

edu/classes/cs422/2010/bib/lions96ariane5.pdf.

[43] Logic for Programming - Técnico Lisboa. url: https://fenix.tecnico.ulisboa.

pt/cursos/leic-a/disciplina-curricular/1529008373638.

63

https://doi.org/10.1145/357980.358001
https://doi.org/10.2307/2268661
https://www.ualg.pt/en/curso/1478
https://www.ualg.pt/en/curso/1478
https://hal.inria.fr/hal-00930213
https://doi.org/10.1007/11617990_10
http://zoo.cs.yale.edu/classes/cs422/2010/bib/lions96ariane5.pdf
http://zoo.cs.yale.edu/classes/cs422/2010/bib/lions96ariane5.pdf
https://fenix.tecnico.ulisboa.pt/cursos/leic-a/disciplina-curricular/1529008373638
https://fenix.tecnico.ulisboa.pt/cursos/leic-a/disciplina-curricular/1529008373638

BIBLIOGRAPHY

[44] Lógica Computacional - Faculdade de Ciências da Universidade do Porto. url: https:

//sigarra.up.pt/fcup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=

409431.

[45] Lógica Computacional - FCT. url: http://lc.ssdi.di.fct.unl.pt/1819/web/

index.html.

[46] Lógica Computacional - UBI. url: http://www.di.ubi.pt/~desousa/LC/lc.html.

[47] Lógica EI - Universidade do Minho. url: https://miei.di.uminho.pt/plano_

estudos.html#l_gica_ei.

[48] J. P. Martins. Lógica e Raciocínio. 1st Edition. College Publications, 2014.

[49] Matemática Discreta - Faculdade de Engenharia da Universidade do Porto. url: https:

//sigarra.up.pt/feup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=

436426.

[50] Matemática Discreta - Universidade de Aveiro. url: https://www.ua.pt/deti/uc/

2585.

[51] E. Mendelson. Introduction to mathematical logic. 3rd Edition. Chapman and Hall,

1987.

[52] N. Moreira. Lógica Computacional. 2016. url: http://www.dcc.fc.up.pt/

~sandra//Home/LC1920_files/nlc.pdf.

[53] L. de Moura and N. Bjørner. “Z3: An Efficient SMT Solver.” In: Tools and Algorithms
for the Construction and Analysis of Systems. Vol. 4963. Lecture Notes in Computer

Science. Springer, 2008, pp. 337–340.

[54] P. Müller, M. Schwerhoff, and A. J. Summers. “Viper: A Verification Infrastructure

for Permission-Based Reasoning.” In: Verification, Model Checking, and Abstract
Interpretation. Vol. 9583. Lecture Notes in Computer Science. Springer, 2016.

[55] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hundhausen, A. Ko-

rhonen, L. Malmi, M. McNally, S. Rodger, et al. “Exploring the role of visualization

and engagement in computer science education.” In: ACM Sigcse Bulletin. Vol. 35.

2. ACM. 2002, pp. 131–152.

[56] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle/HOL: a proof assistant for higher-
order logic. Vol. 2283. Lectures Notes in Computer Science. Springer, 2002. doi:

10.1007/3-540-45949-9.

[57] M. Pereira. Desfuncionalizar para Provar. 2019. arXiv: 1905.08368. url: http:

//arxiv.org/abs/1905.08368.

[58] F. Pfenning. “Logical Frameworks—A Brief Introduction.” In: Proof and System-
Reliability. Vol. 62. NATO Science Series. Springer, 2002, pp. 137–166. doi: 10.

1007/978-94-010-0413-8_5.

64

https://sigarra.up.pt/fcup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=409431
https://sigarra.up.pt/fcup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=409431
https://sigarra.up.pt/fcup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=409431
http://lc.ssdi.di.fct.unl.pt/1819/web/index.html
http://lc.ssdi.di.fct.unl.pt/1819/web/index.html
http://www.di.ubi.pt/~desousa/LC/lc.html
https://miei.di.uminho.pt/plano_estudos.html#l_gica_ei
https://miei.di.uminho.pt/plano_estudos.html#l_gica_ei
https://sigarra.up.pt/feup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=436426
https://sigarra.up.pt/feup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=436426
https://sigarra.up.pt/feup/pt/ucurr_geral.ficha_uc_view?pv_ocorrencia_id=436426
https://www.ua.pt/deti/uc/2585
https://www.ua.pt/deti/uc/2585
http://www.dcc.fc.up.pt/~sandra//Home/LC1920_files/nlc.pdf
http://www.dcc.fc.up.pt/~sandra//Home/LC1920_files/nlc.pdf
https://doi.org/10.1007/3-540-45949-9
https://arxiv.org/abs/1905.08368
http://arxiv.org/abs/1905.08368
http://arxiv.org/abs/1905.08368
https://doi.org/10.1007/978-94-010-0413-8_5
https://doi.org/10.1007/978-94-010-0413-8_5

BIBLIOGRAPHY

[59] F. Pfenning and C. Schürmann. “System Description: Twelf — A Meta-Logical

Framework for Deductive Systems.” In: Automated Deduction — CADE-16. Vol. 1632.

Lectures Notes in Computer Science. Springer, 1999, pp. 202–206.

[60] A. Ravara. “A Simple Functional Presentation and an Inductive Correctness Proof

of the Horn Algorithm.” In: Electronic Proceedings in Theoretical Computer Science
278 (Sept. 2018), pp. 34–48.

[61] A. Ravara. Computational Logic: Objectives, syllabus, contents and teaching and as-
sessment methods. Private Communication, 2018.

[62] J. C. Reynolds. “Definitional Interpreters for Higher-Order Programming Lan-

guages.” In: Higher-Order and Symbolic Computation 11.4 (1998), pp. 363–397. doi:

10.1023/A:1010027404223.

[63] T. Roxo, M. Pereira, and S. M. de Sousa. Functional Programming with style and
costless: CPS transformation "à la carte". 2019. url: https://releaselab.gitlab.

io/factor/pdfs/programacao_funcional_com_estilo.pdf.

[64] M. Sipser. Introduction to the Theory of Computation. 1st Edition. International

Thomson Publishing, 1996.

[65] M. H. Stone. The theory of representation for Boolean algebras. Vol. 40. 1. JSTOR,

1936, pp. 37–111.

[66] G. J. Sussman and G. L. Steele. “Scheme: A Interpreter for Extended Lambda

Calculus.” In: Higher-Order and Symbolic Computation 11.4 (1998), pp. 405–439.

doi: 10.1023/A:1010035624696.

[67] Tezos Foundation. url: https://tezos.foundation/.

[68] The Coq Proof Assistant. url: https://coq.inria.fr/about-coq.

[69] M Thomas and H Thimbleby. Computer Bugs in Hospitals: An Unnoticed Killer. 2018.

url: http://www.harold.thimbleby.net/killer.pdf.

[70] H. Trefftz. Continuation–passing style in ML. 2002.

[71] Twelf Project. url: http://twelf.org/wiki/Main_Page.

[72] Twelf Theorem Prover. url: https://www.cs.cmu.edu/~twelf/guide- 1- 4/

twelf_10.html.

[73] F. Wiedijk. The Seventeen Provers of the World. Vol. 3600. 3600. Springer, 2006. doi:

10.1007/11542384.

[74] A. Yushkovskiy. Comparison of Two Theorem Provers: Isabelle/HOL and Coq. 2018.

arXiv: 1808.09701 [cs.LO].

65

https://doi.org/10.1023/A:1010027404223
https://releaselab.gitlab.io/factor/pdfs/programacao_funcional_com_estilo.pdf
https://releaselab.gitlab.io/factor/pdfs/programacao_funcional_com_estilo.pdf
https://doi.org/10.1023/A:1010035624696
https://tezos.foundation/
https://coq.inria.fr/about-coq
http://www.harold.thimbleby.net/killer.pdf
http://twelf.org/wiki/Main_Page
https://www.cs.cmu.edu/~twelf/guide-1-4/twelf_10.html
https://www.cs.cmu.edu/~twelf/guide-1-4/twelf_10.html
https://doi.org/10.1007/11542384
https://arxiv.org/abs/1808.09701

A
p
p
e
n
d
i
x

A
Appendix 1 CNF Transformation Algorithm

A.1 Full Implementation

module T

use booltheory.BoolImplementation, formula.LemmasAux, formula.

PropositionalFormula, formula.ConjunctiveNormalForm, Size, int.Int

let rec function impl_free (phi: formula) : formula_wi

= match phi with

| Prop t → if t = bot then L_wi (LBottom)

else FNeg_wi (L_wi LBottom)

| Var i → L_wi (LVar i)

| Neg phi1 → FNeg_wi (impl_free phi1)

| Or phi1 phi2 → FOr_wi (impl_free phi1) (impl_free phi2)

| And phi1 phi2 → FAnd_wi (impl_free phi1) (impl_free phi2)

| Impl phi1 phi2 → FOr_wi (FNeg_wi (impl_free phi1)) (impl_free phi2)

end

let rec function nnfc (phi: formula_wi)

= match phi with

| FNeg_wi (FNeg_wi phi1) → nnfc phi1

| FNeg_wi (FAnd_wi phi1 phi2) → FOr_nnf (nnfc (FNeg_wi phi1)) (nnfc (

FNeg_wi phi2))

| FNeg_wi (FOr_wi phi1 phi2) → FAnd_nnf (nnfc (FNeg_wi phi1)) (nnfc (

FNeg_wi phi2))

| FNeg_wi (L_wi phi1) → FNeg_nnf (phi1)

| FOr_wi phi1 phi2 → FOr_nnf (nnfc phi1) (nnfc phi2)

| FAnd_wi phi1 phi2 → FAnd_nnf (nnfc phi1) (nnfc phi2)

67

APPENDIX A. APPENDIX 1 CNF TRANSFORMATION ALGORITHM

| L_wi phi1 → L_nnf phi1

end

let rec function distr (phi1 phi2: formula_cnf)

= match phi1, phi2 with

| FAnd_cnf phi11 phi12, phi2 → FAnd_cnf (distr phi11 phi2) (distr phi12

phi2)

| phi1, FAnd_cnf phi21 phi22 → FAnd_cnf (distr phi1 phi21) (distr phi1

phi22)

| FClause_cnf phi1, FClause_cnf phi2 → FClause_cnf (DOr_cnf phi1 phi2)

end

let rec function cnfc (phi: formula_nnf)

= match phi with

| FOr_nnf phi1 phi2 → distr (cnfc phi1) (cnfc phi2)

| FAnd_nnf phi1 phi2 → FAnd_cnf (cnfc phi1) (cnfc phi2)

| FNeg_nnf literal → FClause_cnf (DNeg_cnf literal)

| L_nnf literal → FClause_cnf (DLiteral literal)

end

let t (phi: formula) : formula_cnf

= cnfc (nnfc (impl_free phi))

end

A.2 Evaluation Functions

function assign (e : formula) (f : i → t) : formula =

match e with

| Prop t → Prop t

| Var i → Prop (f i)

| Neg e → Neg (assign e f)

| And e1 e2 → And (assign e1 f) (assign e2 f)

| Or e1 e2 → Or (assign e1 f) (assign e2 f)

| Impl e1 e2 → Impl (assign e1 f) (assign e2 f)

end

function eval_recursive (e : formula) : t =

match e with

| Prop t → t

| Neg e1 → neg (eval_recursive e1)

| And e1 e2 → (eval_recursive e1) /*\ (eval_recursive e2)

| Or e1 e2 → (eval_recursive e1) */ (eval_recursive e2)

| Impl e1 e2 → (eval_recursive e1) →* (eval_recursive e2)

68

A.2. EVALUATION FUNCTIONS

| _ → bot (* never reached *)

end

function eval (e : formula) (f : i → t) : t =

eval_recursive (assign e f)

function eval_pliteral (l: pliteral) (f: i → t) : t

= match l with

| LBottom → bot

| LVar i → f i

end

function eval_wi (fwi: formula_wi) (f: i → t) : t

= match fwi with

| L_wi phi1 → eval_pliteral phi1 f

| FAnd_wi fwi1 fwi2 → eval_wi fwi1 f /*\ eval_wi fwi2 f

| FOr_wi fwi1 fwi2 → eval_wi fwi1 f */ eval_wi fwi2 f

| FNeg_wi fwi → neg (eval_wi fwi f)

end

function eval_nnf (fnnf: formula_nnf) (f: i → t) : t

= match fnnf with

| FNeg_nnf literal → neg (eval_pliteral literal f)

| L_nnf literal → eval_pliteral literal f

| FAnd_nnf fnnf1 fnnf2 → eval_nnf fnnf1 f /*\ eval_nnf fnnf2 f

| FOr_nnf fnnf1 fnnf2 → eval_nnf fnnf1 f */ eval_nnf fnnf2 f

end

function eval_clause_cnf (fcnf: clause_cnf) (f: i → t) : t

= match fcnf with

| DLiteral l → eval_pliteral l f

| DNeg_cnf l → neg (eval_pliteral l f)

| DOr_cnf phi1 phi2 → eval_clause_cnf phi1 f */ eval_clause_cnf phi2 f

end

function eval_formula_cnf (e: formula_cnf) (f: i → t) : t

= match e with

| FClause_cnf phi1 → eval_clause_cnf phi1 f

| FAnd_cnf phi1 phi2 → eval_formula_cnf phi1 f /*\ eval_formula_cnf phi2

f

end

69

APPENDIX A. APPENDIX 1 CNF TRANSFORMATION ALGORITHM

A.3 Direct Style Proof

let rec function impl_free (phi: formula) : formula_wi

variant{ phi }

ensures{ forall f. eval phi f = eval_wi result f }

= ...

let rec function nnfc (phi: formula_wi)

variant{ size phi }

ensures{ (forall f. eval_wi phi f = eval_nnf result f)}

= ...

let rec function distr (phi1 phi2: formula_cnf)

variant{ size_cnf phi1 + size_cnf phi2 }

ensures{ (forall f. ((eval_formula_cnf phi1 f */ eval_formula_cnf phi2 f) =

eval_formula_cnf result f)) }

= ...

let rec function cnfc (phi: formula_nnf)

variant{ phi }

ensures{ (forall f. eval_nnf phi f = eval_formula_cnf result f) }

= ...

let t (phi: formula) : formula_cnf

ensures{ (forall f. eval phi f = eval_formula_cnf result f)}

= ...

70

A.4. CPS VERSION

A.4 CPS Version

module T_CPS

use booltheory.BoolImplementation, formula.PropositionalFormula, formula.

ConjunctiveNormalForm, T, Size, int.Int

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a) : ’a

= match phi with

| Prop t → if t = bot then k (L_wi (LBottom))

else k (FNeg_wi (L_wi LBottom))

| Var i → k (L_wi (LVar i))

| Neg phi1 → impl_free_cps phi1 (fun con → k (FNeg_wi con))

| Or phi1 phi2 → impl_free_cps phi1 (fun con → impl_free_cps phi2 (fun

con1 → k (FOr_wi con con1)))

| And phi1 phi2 → impl_free_cps phi1 (fun con → impl_free_cps phi2 (fun

con1 → k (FAnd_wi con con1)))

| Impl phi1 phi2 → impl_free_cps phi1 (fun con → impl_free_cps phi2 (fun

con1 → k (FOr_wi (FNeg_wi con) con1)))

end

let impl_free_main (phi: formula) : formula_wi

ensures{forall f. eval phi f = eval_wi result f}

= impl_free_cps phi (fun x → x)

let rec nnfc_cps (phi: formula_wi) (k: formula_nnf → ’a) : ’a

= match phi with

| FNeg_wi (FNeg_wi phi1) → nnfc_cps phi1 (fun con → k con)

| FNeg_wi (FAnd_wi phi1 phi2) → nnfc_cps (FNeg_wi phi1) (fun con →
nnfc_cps (FNeg_wi phi2) (fun con1 → k (FOr_nnf con con1)))

| FNeg_wi (FOr_wi phi1 phi2) → nnfc_cps (FNeg_wi phi1) (fun con → nnfc_cps

(FNeg_wi phi2) (fun con1 → k (FAnd_nnf con con1)))

| FOr_wi phi1 phi2 → nnfc_cps phi1 (fun con → nnfc_cps phi2 (fun con1 → k

(FOr_nnf con con1)))

| FAnd_wi phi1 phi2 → nnfc_cps phi1 (fun con → nnfc_cps phi2 (fun con1 →
k (FAnd_nnf con con1)))

| FNeg_wi (L_wi phi1) → k (FNeg_nnf phi1)

| L_wi phi1 → k (L_nnf phi1)

end

let nnfc_main (phi: formula_wi) : formula_nnf

ensures{(forall f. eval_wi phi f = eval_nnf result f)}

= nnfc_cps phi (fun x → x)

let rec distr_cps (phi1 phi2: formula_cnf) (k: formula_cnf → ’a) : ’a

= match phi1, phi2 with

71

APPENDIX A. APPENDIX 1 CNF TRANSFORMATION ALGORITHM

| FAnd_cnf phi11 phi12, phi2 → distr_cps phi11 phi2 (fun con → distr_cps

phi12 phi2 (fun con1 → k (FAnd_cnf con con1)))

| phi1, FAnd_cnf phi21 phi22 → distr_cps phi1 phi21 (fun con → distr_cps

phi1 phi22 (fun con1 → k (FAnd_cnf con con1)))

| FClause_cnf phi1, FClause_cnf phi2 → k (FClause_cnf (DOr_cnf phi1 phi2))

end

let distr_main (phi1 phi2: formula_cnf) : formula_cnf

= distr_cps phi1 phi2 (fun x → x)

let rec cnfc_cps (phi: formula_nnf) (k: formula_cnf → ’a) : ’a

= match phi with

| FOr_nnf phi1 phi2 → cnfc_cps phi1 (fun con → cnfc_cps phi2 (fun con1 →
distr_cps con con1 k))

| FAnd_nnf phi1 phi2 → cnfc_cps phi1 (fun con → cnfc_cps phi2 (fun con1 →
k (FAnd_cnf con con1)))

| FNeg_nnf literal → k (FClause_cnf (DNeg_cnf literal))

| L_nnf literal → k (FClause_cnf (DLiteral literal))

end

let cnfc_main (phi: formula_nnf) : formula_cnf

= cnfc_cps phi (fun x → x)

let t_main (phi: formula) : formula_cnf

= cnfc_cps (nnfc_cps (impl_free_cps (phi) (fun x → x)) (fun x → x)) (fun x

→ x)

end

A.5 CPS Proof

module T_CPS

use booltheory.BoolImplementation, formula.PropositionalFormula, formula.

ConjunctiveNormalForm, T, Size, int.Int

let rec impl_free_cps (phi: formula) (k: formula_wi → ’a) : ’a

variant{ phi }

ensures{ result = k (impl_free phi) }

= ...

let impl_free_main (phi: formula) : formula_wi

ensures{forall f. eval phi f = eval_wi result f}

= ...

72

A.5. CPS PROOF

let rec nnfc_cps (phi: formula_wi) (k: formula_nnf → ’a) : ’a

variant{ size phi }

ensures{ result = k (nnfc phi) }

= ...

let nnfc_main (phi: formula_wi) : formula_nnf

ensures{(forall f. eval_wi phi f = eval_nnf result f)}

= ...

let rec distr_cps (phi1 phi2: formula_cnf) (k: formula_cnf → ’a) : ’a

variant{ size_cnf phi1 + size_cnf phi2 }

ensures{ result = k (distr phi1 phi2) }

= ...

let distr_main (phi1 phi2: formula_cnf) : formula_cnf

ensures { (forall f. ((eval_formula_cnf phi1 f */ eval_formula_cnf phi2 f)

= eval_formula_cnf result f)) }

= ...

let rec cnfc_cps (phi: formula_nnf) (k: formula_cnf → ’a) : ’a

variant{ phi }

ensures{ result = k (cnfc phi)}

= ...

let cnfc_main (phi: formula_nnf) : formula_cnf

ensures{ (forall f. eval_nnf phi f = eval_formula_cnf result f) }

= ...

let t_main (phi: formula) : formula_cnf

ensures{ (forall f. eval phi f = eval_formula_cnf result f) }

= ...

end

73

APPENDIX A. APPENDIX 1 CNF TRANSFORMATION ALGORITHM

A.6 Defunctionalized Version

module Defunctionalization

use booltheory.BoolImplementation, formula.PropositionalFormula, formula.

ConjunctiveNormalForm, T, Size, int.Int

(* TYPES *)

type impl_kont =

| KImpl_Id

| KImpl_Neg impl_kont formula

| KImpl_OrLeft formula impl_kont

| KImpl_OrRight impl_kont formula_wi

| KImpl_AndLeft formula impl_kont

| KImpl_AndRight impl_kont formula_wi

| KImpl_ImplLeft formula impl_kont

| KImpl_ImplRight impl_kont formula_wi

type nnfc_kont =

| Knnfc_id

| Knnfc_negneg nnfc_kont formula_wi

| Knnfc_negandleft formula_wi nnfc_kont

| Knnfc_negandright nnfc_kont formula_nnf

| Knnfc_negorleft formula_wi nnfc_kont

| Knnfc_negorright nnfc_kont formula_nnf

| Knnfc_andleft formula_wi nnfc_kont

| Knnfc_andright nnfc_kont formula_nnf

| Knnfc_orleft formula_wi nnfc_kont

| Knnfc_orright nnfc_kont formula_nnf

type distr_kont =

| KDistr_Id

| KDistr_Left formula_cnf formula_cnf distr_kont

| KDistr_Right distr_kont formula_cnf

type cnfc_kont =

| KCnfc_Id

| KCnfc_OrLeft formula_nnf cnfc_kont

| KCnfc_OrRight cnfc_kont formula_cnf

| KCnfc_AndLeft formula_nnf cnfc_kont

| KCnfc_AndRight cnfc_kont formula_cnf

(* DESF FUNCTIONS *)

74

A.6. DEFUNCTIONALIZED VERSION

(* IMPL_FREE *)

let rec impl_free_defu (phi: formula) (k: impl_kont) : formula_wi

= match phi with

| Prop t → if t = bot then impl_apply (L_wi (LBottom)) k

else impl_apply (FNeg_wi (L_wi LBottom)) k

| Var i → impl_apply (L_wi (LVar i)) k

| Neg phi1 → impl_free_defu phi1 (KImpl_Neg k phi1)

| Or phi1 phi2 → impl_free_defu phi1 (KImpl_OrLeft phi2 k)

| And phi1 phi2 → impl_free_defu phi1 (KImpl_AndLeft phi2 k)

| Impl phi1 phi2 → impl_free_defu phi1 (KImpl_ImplLeft phi2 k)

end

with impl_apply (phi: formula_wi) (k: impl_kont) : formula_wi

= match k with

| KImpl_Id → phi

| KImpl_Neg k phi1 → impl_apply (FNeg_wi phi) k

| KImpl_OrLeft phi1 k → impl_free_defu phi1 (KImpl_OrRight k phi)

| KImpl_OrRight k phi2 → impl_apply (FOr_wi phi2 phi) k

| KImpl_AndLeft phi1 k → impl_free_defu phi1 (KImpl_AndRight k phi)

| KImpl_AndRight k phi2 → impl_apply (FAnd_wi phi2 phi) k

| KImpl_ImplLeft phi1 k → impl_free_defu phi1 (KImpl_ImplRight k phi)

| KImpl_ImplRight k phi2→ impl_apply (FOr_wi (FNeg_wi phi2) phi) k

end

let rec impl_defu_main (phi:formula) : formula_wi

= impl_free_defu phi KImpl_Id

(* NNFC *)

let rec nnfc_defu (phi: formula_wi) (k: nnfc_kont) : formula_nnf

= match phi with

| FNeg_wi (FNeg_wi phi1) → nnfc_defu phi1 (Knnfc_negneg k phi1)

| FNeg_wi (FAnd_wi phi1 phi2) → nnfc_defu (FNeg_wi phi1) (Knnfc_negandleft

phi2 k)

| FNeg_wi (FOr_wi phi1 phi2) → nnfc_defu (FNeg_wi phi1) (Knnfc_negorleft

phi2 k)

| FOr_wi phi1 phi2 → nnfc_defu phi1 (Knnfc_orleft phi2 k)

| FAnd_wi phi1 phi2 → nnfc_defu phi1 (Knnfc_andleft phi2 k)

| FNeg_wi (L_wi phi1) → nnfc_apply (FNeg_nnf phi1) k

| L_wi phi1 → nnfc_apply (L_nnf phi1) k

end

75

APPENDIX A. APPENDIX 1 CNF TRANSFORMATION ALGORITHM

with nnfc_apply (phi: formula_nnf) (k: nnfc_kont) : formula_nnf

= match k with

| Knnfc_id → phi

| Knnfc_negneg k phi1 → nnfc_apply phi k

| Knnfc_negandleft phi1 k → nnfc_defu (FNeg_wi phi1) (Knnfc_negandright k

phi)

| Knnfc_negandright k phi2 → nnfc_apply (FOr_nnf phi2 phi) k

| Knnfc_negorleft phi1 k → nnfc_defu (FNeg_wi phi1) (Knnfc_negorright k phi

)

| Knnfc_negorright k phi2 → nnfc_apply (FAnd_nnf phi2 phi) k

| Knnfc_andleft phi1 k → nnfc_defu phi1 (Knnfc_andright k phi)

| Knnfc_andright k phi2 → nnfc_apply (FAnd_nnf phi2 phi) k

| Knnfc_orleft phi1 k → nnfc_defu phi1 (Knnfc_orright k phi)

| Knnfc_orright k phi2 → nnfc_apply (FOr_nnf phi2 phi) k

end

let nnfc_defu_main (phi: formula_wi) : formula_nnf

= nnfc_defu phi Knnfc_id

(* Distr *)

let rec distr_defu (phi1 phi2: formula_cnf) (k: distr_kont) : formula_cnf

= match phi1, phi2 with

| FAnd_cnf phi11 phi12, phi2 → distr_defu phi11 phi2 (KDistr_Left phi12

phi2 k)

| phi1, FAnd_cnf phi21 phi22 → distr_defu phi1 phi21 (KDistr_Left phi1

phi22 k)

| FClause_cnf phi1, FClause_cnf phi2 → distr_apply (FClause_cnf (DOr_cnf

phi1 phi2)) k

end

with distr_apply (phi: formula_cnf) (k: distr_kont) : formula_cnf

= match k with

| KDistr_Id → phi

| KDistr_Left phi1 phi2 k →
distr_defu phi1 phi2 (KDistr_Right k phi)

| KDistr_Right k phi1 →
distr_apply (FAnd_cnf phi1 phi) k

end

let distr_defu_main (phi1 phi2: formula_cnf) : formula_cnf

= distr_defu phi1 phi2 KDistr_Id

(* CNFC *)

let rec cnfc_defu (phi: formula_nnf) (k: cnfc_kont) : formula_cnf

76

A.7. DEFUNCTIONALIZED PROOF

= match phi with

| FOr_nnf phi1 phi2 → cnfc_defu phi1 (KCnfc_OrLeft phi2 k)

| FAnd_nnf phi1 phi2 → cnfc_defu phi1 (KCnfc_AndLeft phi2 k)

| FNeg_nnf literal → cnfc_apply (FClause_cnf (DNeg_cnf literal)) k

| L_nnf literal → cnfc_apply (FClause_cnf (DLiteral literal)) k

end

with cnfc_apply (phi: formula_cnf) (k: cnfc_kont) : formula_cnf

= match k with

| KCnfc_Id → phi

| KCnfc_OrLeft phi1 k →
cnfc_defu phi1 (KCnfc_OrRight k phi)

| KCnfc_OrRight k phi2 →
cnfc_apply (distr_defu phi2 phi KDistr_Id) k

| KCnfc_AndLeft phi1 k →
cnfc_defu phi1 (KCnfc_AndRight k phi)

| KCnfc_AndRight k phi2 →
cnfc_apply (FAnd_cnf phi2 phi) k

end

let cnfc_defu_main (phi: formula_nnf) : formula_cnf

= cnfc_defu phi KCnfc_Id

let t (phi: formula) : formula_cnf

= cnfc_defu_main (nnfc_defu_main (impl_defu_main phi))

end

A.7 Defunctionalized Proof

(* POSTS *)

predicate impl_post (k: impl_kont) (phi result: formula_wi)

= match k with

| KImpl_Id → let x = phi in x = result

| KImpl_Neg k phi1 → let neg = phi in impl_post k (FNeg_wi phi) result

| KImpl_OrLeft phi1 k → let hl = phi in impl_post k (FOr_wi phi (impl_free

phi1)) result

| KImpl_OrRight k phi2 → let hr = phi in impl_post k (FOr_wi phi2 hr) result

| KImpl_AndLeft phi1 k → let hl = phi in impl_post k (FAnd_wi phi (impl_free

phi1)) result

| KImpl_AndRight k phi2 → let hr = phi in impl_post k (FAnd_wi phi2 hr)

result

| KImpl_ImplLeft phi1 k → let hl = phi in impl_post k (FOr_wi (FNeg_wi phi) (

impl_free phi1)) result

77

APPENDIX A. APPENDIX 1 CNF TRANSFORMATION ALGORITHM

| KImpl_ImplRight k phi2→ let hr = phi in impl_post k (FOr_wi (FNeg_wi phi2)

hr) result

end

predicate nnfc_post (k: nnfc_kont) (phi result: formula_nnf)

= match k with

| Knnfc_id → let x = phi in x = result

| Knnfc_negneg k phi1 → let neg = phi in nnfc_post k phi result

| Knnfc_negandleft phi1 k → let hl = phi in nnfc_post k (FOr_nnf phi (nnfc (

FNeg_wi phi1))) result

| Knnfc_negandright k phi2 → let hr = phi in nnfc_post k (FOr_nnf phi2 hr)

result

| Knnfc_negorleft phi1 k → let hl = phi in nnfc_post k (FAnd_nnf phi (nnfc (

FNeg_wi phi1))) result

| Knnfc_negorright k phi2 →let hr = phi in nnfc_post k (FAnd_nnf phi2 hr)

result

| Knnfc_andleft phi1 k → let hl = phi in nnfc_post k (FAnd_nnf phi (nnfc phi1

)) result

| Knnfc_andright k phi2 → let hr = phi in nnfc_post k (FAnd_nnf phi2 hr)

result

| Knnfc_orleft phi1 k → let hl = phi in nnfc_post k (FOr_nnf phi (nnfc phi1))

result

| Knnfc_orright k phi2 → let hr = phi in nnfc_post k (FOr_nnf phi2 hr) result

end

predicate distr_post (k: distr_kont) (phi result: formula_cnf)

= match k with

| KDistr_Id → let x = phi in x = result

| KDistr_Left phi1 phi2 k → let hl = phi in distr_post k (FAnd_cnf hl (distr

phi1 phi2)) result

| KDistr_Right k phi1 → let hr = phi in distr_post k (FAnd_cnf phi1 hr)

result

end

predicate cnfc_post (k: cnfc_kont) (phi result: formula_cnf)

= match k with

| KCnfc_Id → let x = phi in x = result

| KCnfc_OrLeft phi1 k → let hl = phi in cnfc_post k (distr hl (cnfc phi1))

result

| KCnfc_OrRight k phi2 → let hr = phi in cnfc_post k (distr phi2 hr) result

| KCnfc_AndLeft phi1 k → let hl = phi in cnfc_post k (FAnd_cnf phi (cnfc phi1

)) result

| KCnfc_AndRight k phi2 → let hr = phi in cnfc_post k (FAnd_cnf phi2 hr)

result

end

78

A.7. DEFUNCTIONALIZED PROOF

(* FUNCTIONS *)

let rec impl_free_defu (phi: formula) (k: impl_kont) : formula_wi

diverges

ensures{ impl_post k (impl_free phi) result }

= ...

with impl_apply (phi: formula_wi) (k: impl_kont) : formula_wi

diverges

ensures{impl_post k phi result}

= ...

let rec impl_defu_main (phi:formula) : formula_wi

diverges

ensures{ forall f. eval phi f = eval_wi result f }

= ...

let rec nnfc_defu (phi: formula_wi) (k: nnfc_kont) : formula_nnf

diverges

ensures{ nnfc_post k (nnfc phi) result }

= ...

with nnfc_apply (phi: formula_nnf) (k: nnfc_kont) : formula_nnf

diverges

ensures{ nnfc_post k phi result }

= ...

let nnfc_defu_main (phi: formula_wi) : formula_nnf

diverges

ensures { forall f. eval_wi phi f = eval_nnf result f }

= ...

let rec distr_defu (phi1 phi2: formula_cnf) (k: distr_kont) : formula_cnf

diverges

ensures{ distr_post k (distr phi1 phi2) result }

= ...

with distr_apply (phi: formula_cnf) (k: distr_kont) : formula_cnf

diverges

ensures{ distr_post k phi result }

= ...

let distr_defu_main (phi1 phi2: formula_cnf) : formula_cnf

diverges

ensures { forall f. ((eval_formula_cnf phi1 f */ eval_formula_cnf phi2 f) =

eval_formula_cnf result f) }

79

APPENDIX A. APPENDIX 1 CNF TRANSFORMATION ALGORITHM

= ...

let rec cnfc_defu (phi: formula_nnf) (k: cnfc_kont) : formula_cnf

diverges

ensures{ cnfc_post k (cnfc phi) result }

= ...

with cnfc_apply (phi: formula_cnf) (k: cnfc_kont) : formula_cnf

diverges

ensures{ cnfc_post k phi result }

= ...fc_apply (FAnd_cnf phi2 phi) k

end

let cnfc_defu_main (phi: formula_nnf) : formula_cnf

diverges

ensures{ forall f. eval_nnf phi f = eval_formula_cnf result f }

= ...

let t (phi: formula) : formula_cnf

diverges

ensures{ forall f. eval phi f = eval_formula_cnf result f }

= ...

80

A
p
p
e
n
d
i
x

B
Appendix 2 Hornify

B.1 Full Implementation

module Hornify

use import formula.ConjunctiveNormalForm as CNF

use import formula.Horn as Horn

use booltheory.BoolImplementation, int.Int, setstheory.BoolSet, setstheory.

PropositionalFormulaSet, option.Option

clone export set.SetApp with type elt = pliteral

exception MoreThanOnePositive

let convertLiteralToR (pl: pliteral) : (rightside)

= match pl with

| LBottom → RProp bot

| LVar x → RVar x

end

let addLiterals (pl: pliteral) (nl: pliteral) (s: set) (p: option rightside)

: (rs: set, rp: option rightside)

= match pl with

| LBottom → let rbottom = Some (RProp bot) in

match nl with

| LBottom → ((add (Prop_pl bot) s), rbottom)

| LVar x → ((add (Var_pl x) s), rbottom)

end

81

APPENDIX B. APPENDIX 2 HORNIFY

| LVar x → let rvar = Some (RVar x) in

match nl with

| LBottom → ((add (Prop_pl bot) s), rvar)

| LVar x → ((add (Var_pl x) s), rvar)

end

end

let processCombination (pl: pliteral) (nl: pliteral) (s: set)

(p: option rightside) : (rs: set, rp: option rightside)

raises{ MoreThanOnePositive }

= match p with

| None → addLiterals pl nl s p

| Some _ → raise MoreThanOnePositive

end

let rec hornify_aux (phi: clause_cnf) (s: set) (p: option rightside)

: (rs: set, rp: option rightside)

raises{ MoreThanOnePositive }

= match phi with

| DOr_cnf (DLiteral _) (DLiteral _) → raise MoreThanOnePositive

| DOr_cnf (DLiteral pl) (DNeg_cnf nl)

| DOr_cnf (DNeg_cnf nl) (DLiteral pl) → processCombination pl nl s p

| DOr_cnf (DNeg_cnf nl1) (DNeg_cnf nl2) →
((add (convertPLiteralToPL nl1) (add (convertPLiteralToPL nl2) s)), p)

| DOr_cnf (DOr_cnf phi1 phi2) (DLiteral pl)

| DOr_cnf (DLiteral pl) (DOr_cnf phi1 phi2) →
match p with

| None →
hornify_aux (DOr_cnf phi1 phi2) s (Some (convertLiteralToR pl))

| Some _ → raise MoreThanOnePositive

end

| DOr_cnf (DOr_cnf phi1 phi2) (DNeg_cnf nl)

| DOr_cnf (DNeg_cnf nl) (DOr_cnf phi1 phi2) →
hornify_aux (DOr_cnf phi1 phi2) (add (convertPLiteralToPL nl) s) p

| DOr_cnf phi1 phi2 →
let (s1,p1) = hornify_aux phi1 s p in hornify_aux phi2 s1 p1

| _ → absurd

end

let buildConjunction (s: set): leftside

= let rec build (s: set)

= if(is_empty s) then absurd else

if((cardinal s) = 1) then (convertPLtoPLC (choose s)) else

let element = choose s in

PLCAnd (convertPLtoPLC (element)) (build (remove (element) s)) in

LPos (build s)

82

B.2. EVALUATION FUNCTIONS

let getPositive (p: option rightside) : rightside

= match p with

| None → RProp bot

| Some x → x

end

let getBasicHorn (phi: clause_cnf) : basic_horn_clause

= match phi with

| DLiteral (LVar x) → BImpl (LTop) (RVar x)

| DLiteral (LBottom) → BImpl (LTop) (RProp bot)

| DNeg_cnf (LVar x) → BImpl (LPos (PLCVar x)) (RProp bot)

| DNeg_cnf (LBottom) → BImpl (LTop) (RProp top)

| DOr_cnf _ _ → let (s,p) = hornify_aux phi (empty ()) None in

BImpl (buildConjunction s) (getPositive p)

end

let rec hornify (phi: formula_cnf) : hornclause

= match phi with

| FClause_cnf phi1 → HBasic (getBasicHorn phi1)

| FAnd_cnf phi1 phi2 → HAnd (hornify phi1) (hornify phi2)

end

end

B.2 Evaluation Functions

module Valuation

use booltheory.BoolImplementation, ConjunctiveNormalForm, option.Option

function assign_rightside (r: rightside) (f: i → t) : rightside

= match r with

| RProp t → RProp t

| RVar i → RProp (f i)

end

function eval_rightside (r: rightside) : t

= match r with

| RProp t → t

| _ → bot

end

83

APPENDIX B. APPENDIX 2 HORNIFY

function eval_positive (plc: conj_pliteral) (f: i → t) : t

= match plc with

| CPL l → eval_pliteral l f

| CPAnd phi1 phi2 → eval_positive phi1 f /*\ (eval_positive phi2 f)

end

function eval_leftside (l: leftside) (f: i → t) : t

= match l with

| LTop → top

| LPos phi1 → eval_positive phi1 f

end

function eval_basichornclause (b: basichornclause) (f: i → t) : t

= match b with

| BImpl left right → (eval_leftside left f) →* (eval_rightside (

assign_rightside right f))

end

function eval_hornclause (h: hornclause) (f: i → t) : t

= match h with

| HBasic h1 → eval_basichornclause h1 f

| HAnd h1 h2 → eval_hornclause h1 f /*\ eval_hornclause h2 f

end

function eval_optionrightside (p: option rightside) (f: i → t) : t

= match p with

| None → bot

| Some x → eval_rightside (assign_rightside x f)

end

end

B.3 Hornify Proof

module Hornify

...

let convertLiteralToR (pl: pliteral) : (rightside)

ensures{ forall f. CNF.eval_pliteral pl f = Horn.eval_rightside (

assign_rightside result f) }

= ...

84

B.3. HORNIFY PROOF

let addLiterals (pl: pliteral) (nl: pliteral) (s: set) (p: option rightside) :

(rs: set, rp: option rightside)

requires{ p = None }

ensures{ (not is_empty rs) }

ensures { forall f. (eval_pliteral pl f */ (neg (eval_pliteral nl f)) */

eval_negative s f */ eval_optionrightside p f) = (eval_negative rs f */

eval_optionrightside rp f) }

= ...

let processCombination (pl: pliteral) (nl: pliteral) (s: set) (p: option

rightside) : (rs: set, rp: option rightside)

raises{ MoreThanOnePositive }

ensures{ (not is_empty rs) }

ensures { forall f. (eval_pliteral pl f */ (neg (eval_pliteral nl f)) */

eval_negative s f */ eval_optionrightside p f) = (eval_negative rs f */

eval_optionrightside rp f) }

= ...

let rec hornify_aux (phi: clause_cnf) (s: set) (p: option rightside) : (rs:

set, rp: option rightside)

requires{ exists x y. phi = DOr_cnf x y }

ensures{ (not is_empty rs) }

ensures{ forall f. eval_domain phi s p f = eval_codomain rs rp f }

ensures{ forall f. eval_domain phi s p f = ((eval_positive rs f) →* (

eval_optionrightside rp f)) }

raises{ MoreThanOnePositive }

variant{ phi }

= ...

let conjunction (s: set): leftside

requires{not is_empty s}

ensures{forall f. eval_positive s f = eval_leftside result f }

= ...

let getPositive (p: option rightside) : rightside

ensures{forall f. eval_optionrightside p f = eval_rightside (

assign_rightside result f)}

= ...

let getBasicHorn (phi: clause_cnf) : basichornclause

ensures{ forall f. eval_clause_cnf phi f = eval_basichornclause result f }

raises{ MoreThanOnePositive }

= ...

85

APPENDIX B. APPENDIX 2 HORNIFY

let rec hornify (phi: formula_cnf) : hornclause

raises{ MoreThanOnePositive }

ensures{forall f. eval_formula_cnf phi f = eval_hornclause result f}

variant{ phi }

= ...

end

86

	Contents
	List of Figures
	List of Tables
	Introduction
	Context
	FACTOR
	Problem
	Objective
	Contributions
	Document Structure

	State of the Art
	Current State of Computational Logic in Portugal
	Tools to support Computational Logic
	Tarski's World
	Fitch
	Boole

	Proof-Assistant Tools
	Agda
	Coq
	Isabelle/HOL
	Twelf
	Why3
	Advantages and Disadvantages
	Conclusions

	Background
	Program Verification
	Why3
	Continuation-Passing Style
	Defunctionalization

	Supporting Boolean Theories
	Boolean Theory
	Boolean Sets Theory
	Theory of Sets of Positive Literals

	Transformation Algorithm to Conjunctive Normal Form
	Functional presentation of the algorithm
	Implementation
	How to obtain the correctness
	Proof of correctness
	Conclusions and Observations

	Transformation Algorithm from CNF to Horn Clauses
	Algorithm Definition
	Functional Presentation of the Algorithm
	Implementation
	Proof of correctness
	Conclusions and Observations

	Towards Step-by-Step Execution
	Continuation-Passing Style
	Defunctionalization
	Observations

	Conclusions
	Bibliography
	Appendix 1 CNF Transformation Algorithm
	Full Implementation
	Evaluation Functions
	Direct Style Proof
	CPS Version
	CPS Proof
	Defunctionalized Version
	Defunctionalized Proof

	Appendix 2 Hornify
	Full Implementation
	Evaluation Functions
	Hornify Proof

